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Abstract
This paper studies the welfare effects of Airbnb’s customer rating system

using a structural empirical model of Bayesian persuasion with moral hazard.
In 2019, over 71% of Airbnb listings in the United States displayed the
highest possible rating of 5 stars. The Bayesian persuasion approach reveals
that pooling all ‘adequate’ qualities above a certain threshold in this 5-star
rating expands the set of listings customers may choose over the outside
options, thereby increasing Airbnb’s market shares and profits. I embed the
Bayesian persuasion rating system design problem in a numerically solvable
demand model of the short-term accommodation market. Moreover, the model
incorporates Airbnb’s pricing and the hosts’ decision to join the platform and
exert costly effort to improve their quality. I exploit variation in the rating
distribution and market conditions across 56 major travel destinations in the
United States over 2018 and 2019 to structurally estimate this model and back
out the distribution of unobserved quality. Counterfactual exercises suggest
that Airbnb’s strategic rating system design led to a consumer welfare loss of
US$288M and a redistribution of profits from high- to medium-quality hosts
of almost US$750M compared to fully revealing ratings in the markets and
period studied.
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1. Introduction
Two-sided sharing economy online marketplaces, such as Airbnb and Uber, have
proliferated over the past years at an impressive rate. Their business model is simple:
they match two private persons – one who offers a specific good or service and one
who demands it. The backbone of this innovative idea is trust. The platform needs
to find a way to create the mutual confidence between two strangers required to
engage in such a transaction. For instance, customers might be concerned about
their safety when lodging in a stranger’s house or riding in a stranger’s car. For this
purpose, most platforms have established rating systems so customers can review
their experience after a transaction. In this way, future platform users can distinguish
good and trustworthy participants from bad ones, and everyone is incentivized to
exert effort to maintain a good reputation. Hence, one may think that it should be
in the platforms’ interest that these ratings are as honest and accurate as possible.
However, the rating distributions we actually observe for major sharing economy

platforms are far from being fully informative, but in general implausibly positive and
highly skewed to the left (see, e.g. Hu, Zhang, and Pavlou, 2009; Zervas, Proserpio,
and Byers, 2021). The left panel of Figure 1 shows the distribution of average star
ratings of the universe of Airbnb ratings in the US, with an average rating of 4.83
and over 71% of listings receiving the maximum score of 5 stars. Essentially, the

Figure 1: Distribution of Ratings: Airbnb vs. Booking.com

Notes: Left panel: average star ratings of the universe of 714,393 Airbnb listings (with three or
more ratings) in the US in December 2019; right panel: average ratings of 35,344 hotels (with three
or more ratings) on booking.com in the US in January 2022. Source: Transparent Intelligence and
booking.com.
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9-step scale from 1 to 5 almost degenerates to a binary signal of ‘acceptable’ (5 stars)
or ‘not good enough’ (4.5 stars and below).1 It is remarkable that the distribution of
hotel ratings on booking.com in the US, shown in the right panel, does not feature
this pattern but is more dispersed and informative.2 This comparison might appear
puzzling, as one would expect that informative ratings are much more important for
the sharing economy platform, where there are no official standards or other sources
of information.

This paper quantifies consumer, host, and platform welfare effects of Airbnb’s
rating system using a structural empirical model of Bayesian persuasion with moral
hazard (Kamenica and Gentzkow, 2011; Boleslavsky and Kim, 2021).3 The Bayesian
persuasion framework is uniquely well suited to study these effects as it highlights the
role of rating systems in impacting customers’ perception of the platform relative to
other alternatives (here hotels or staying at home) on top of its role in incentivizing
costly host effort to maintain good quality, which is often the focus of the literature
on rating systems. This approach reveals that the intuitive reasoning in the opening
paragraph is incomplete. While the rating system is crucial to filter out the lowest
qualities, the uninformative distribution of ratings for listings above a certain quality
threshold, which we observe in the data, may actually be beneficial for profit-
maximizing platforms. By pooling all ‘adequate’ qualities above this threshold in the
highest possible rating of 5 stars, such a design expands the set of listings customers
may choose over the outside options, thereby increasing Airbnb’s market shares and
profits. This upper-censoring of information on quality harms customers on average,
even though they rationally update their beliefs according to Bayes’ rule knowing
perfectly which qualities are included in the 5-star rating.

There are two primary contributions of this paper. First, the Bayesian persuasion
approach sheds light on Airbnb’s (and, more generally, sharing economy platforms’)
incentives for strategic information disclosure through the design of rating systems
and the interaction of these incentives with the platform’s pricing decision and hosts’
decision to join the platform and exert effort to improve their quality. My structural
estimation of a model that incorporates all these aspects allows me to quantify

1The distribution of star ratings for Uber drivers reported by Athey, Castillo, and Chandar (2021)
displays the same pattern with over 80% of 5-star ratings.

2Between December 2019 and January 2022, there have not happened any modifications to either
of the two rating systems that would explain the different shapes of the distributions.

3For related foundational literature on information design under sender commitment, see also
Aumann, Maschler, and Stearns (1995), Calzolari and Pavan (2006), Ostrovsky and Schwarz
(2010), and Rayo and Segal (2010).
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the welfare impact of Airbnb’s rating system design for the platform, hosts, and
consumers.

More broadly, this paper also speaks to the ability of digital platforms to extract and
control large amounts of data and information.4 In the current market environment,
ratings on their own platform are customers’ only relevant source of information
about the unobserved quality of a specific listing. This gives platforms the power to
use ratings as a tool for persuasion to their benefit and the harm of customers and
certain groups of sellers. In settings where there are alternative information sources,
such as for hotels,5 booking platforms do not have this power, and we observe much
more dispersed and informative rating distributions like the one in the right panel of
Figure 1.6 As such, my welfare comparison of the current Airbnb rating system design
relative to a full information counterfactual provides a first indication of the benefits
regulatory interventions that break this ‘information monopoly’ could achieve.7 An
example of such an intervention could be the introduction of an independent platform
collecting ratings of Airbnb listings.
The second contribution of this paper is methodological. This work is one of the

first structural estimations of a Bayesian persuasion model. I embed the Bayesian
persuasion information design problem in a discrete choice demand model and combine
it with other supply-side features (host effort to maintain quality, host participation,
and platform pricing) to match the key features of the short-term accommodation
market. The critical challenge in this regard is to specify a model that is rich enough to
adequately reflect market interaction but is still tractable. I develop a novel numerical
solution algorithm, based on the duality approach to Bayesian persuasion (Dworczak
and Martini, 2019; Dworczak and Kolotilin, 2019), that allows me to solve this model
at a low computational cost and estimate its primitives via the Generalized Method
of Moments (GMM) exploiting cross-market variation in exogenous conditions and

4In November 2022, the European Commission adopted a proposal for a regulation “on data
collection and sharing relating to short-term accommodation rental services,” which would
mandate Airbnb to share booking data with public authorities (see https://single-market-
economy.ec.europa.eu/system/files/2022-11/COM_2022_571_1_EN_ACT_part1_v7.pdf; ac-
cessed on November 13, 2022). Even though this proposal does not speak to customer ratings,
it shows that concerns about data collection and usage are at the top of competition authorities’
agenda.

5Such alternative sources for information on specific hotels include competing booking platforms
(booking.com, Expedia, etc.), but also ratings on third-party platforms such as TripAdvisor and
Google.

6This reasoning is reminiscent of Lizzeri (1999) who shows that a monopoly certifying intermediary
may have incentives to only reveal whether the quality is above some minimal standard, while
competition among certifiers can lead to full information revelation.

7Recently, customer ratings in online markets have caught competition authorities’ attention, for
instance, in Germany (Bundeskartellamt, 2020).
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predicted outcomes. This toolkit may also be used to analyze rating systems of
other platforms, such as Uber, or study empirically other applications of information
design that feature similar censoring information structures, such as grade inflation
in schools (Ostrovsky and Schwarz, 2010; Boleslavsky and Cotton, 2015).

At the core of my structural model is the platform’s information design problem
of choosing a profit-maximizing information structure. In this context, this means
that Airbnb determines the mapping from unobserved quality to star ratings. As
discussed in more detail in Section 3.1, there are several design elements the platform
can use to influence this mapping.
The objective function of the Bayesian persuasion information design problem

derives from a discrete choice demand system that features a unimodal distribution of
reservation values for choosing Airbnb over hotels and the outside option of staying at
home. In this unimodal case, an upper-censoring information structure is optimal for
the platform (Kolotilin, 2018; Kolotilin, Mylovanov, and Zapechelnyuk, 2022). That
is, quality is fully revealed below a certain threshold (empirically, gradual steps from
1–4.5 stars), and above this threshold, all qualities are pooled into one single signal–
empirically, the 5-star rating. In Section 2, I discuss in more detail the intuition
behind this result and its welfare consequences, and I show that comparative statics
with respect to important market conditions like prices and substitution elasticities
result in different quality-cutoffs for the pooling signal and a different share of 5-star
ratings. In Section 3.3, I will discuss how these comparative statics can help explain
reduced-form patterns observed in the data and how cross-market variation can be
used to infer the shape of the unobserved quality distribution.

I embed this Bayesian persuasion problem of designing the profit-maximizing rating
system in an empirical model of the short-term accommodation market (Section 4).
The platform chooses the information structure and prices, a representative host
decides which properties to list on Airbnb and how much costly effort to exert to
maintain quality, and customers choose between Airbnb, hotels, and the outside option
of staying at home. Customers’ discrete choice problem is strongly interconnected
with the platform’s information design problem. The posterior expected Airbnb
quality, depending on the information structure, enters the expected indirect utility
for Airbnb. Vice-versa, the conditional choice probability function for Airbnb, which
enters the objective of the Bayesian persuasion problem, is derived from the demand
system.

To solve this model, equilibrium conditions can be restated as additional constraints
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of the platform’s information design problem. Building on very recent insights from
economic theory, particularly from the duality approach to Bayesian persuasion
(Dworczak and Martini, 2019; Dworczak and Kolotilin, 2019), I develop a novel
numerical solution algorithm to solve this complex problem efficiently in milliseconds.
Being able to solve this model repeatedly at a low computational cost allows me
to estimate the whole empirical model jointly by GMM with data from 56 major
travel destinations in the US for the years 2018 and 2019, under the assumption
that observed market outcomes (e.g., prices, the share of 5-star ratings, market
shares) correspond to the optimal solution of this Bayesian persuasion problem in
each market and year.
Counterfactual exercises reveal that the platform would not be able to function

without any rating system that identifies the worst qualities and allows it to establish
a minimum acceptable quality and safety standard. This mechanism works well with
the platform-optimal upper-censoring design (which, by my identifying assumption
corresponds to the currently implemented design) featuring informative ratings at
the bottom of the distribution.
Compared to a counterfactual scenario with fully revealing ratings, the platform-

optimal upper-censoring ratings reduce the average value of Airbnb to customers by
3.5% per booked night or aggregated over the years 2018 and 2019 and the 56 studied
geographical areas (covering about 56% of Airbnb listings in the US), US$288.2M.
About 11% of this consumer surplus loss can be attributed to upper-censoring
ratings providing weaker incentives for hosts to exert costly effort to improve quality.
The remaining 89% can be attributed to customers not being able to differentiate
‘average’ from ‘outstanding’ Airbnb listings ex-ante, occasionally leading to ex-post
‘wrong’ choices. Moreover, the platform-optimal design increases Airbnb’s profits
by US$17.9M and aggregate host profits by US$103.0M. Furthermore, it leads to
a redistribution of US$747M from high-quality hosts, whose booking probability
decreases by being included in the pooling signal, to medium-quality hosts, whose
booking quality is increased by the pooling.

The remainder of this paper is organized as follows. Section 1.1 provides an overview
of the related literature. In Section 2, I introduce a simple stylized persuasion model
that illustrates the basic idea of why a profit-maximizing rating system does not
feature perfect information transmission and how this affects welfare. In Section 3, I
elaborate on the empirical context and data, I argue how the design of rating systems
implies the choice of an information structure in the sense of a Bayesian persuasion

5



model, and I present reduced-form cross-market patterns. Section 4 presents the
structural model. Section 5 elaborates on the estimation method and identification,
and Section 6 presents the results of the structural estimation. Section 7 considers
counterfactual experiments with fully revealing ratings and without any ratings to
quantify the welfare impact of strategic rating system design. Section 8 concludes.

1.1. Related Literature

This research project brings together several strands of the theoretical literature
on information design and the empirical literature on customer ratings. On the
one hand, following Kamenica and Gentzkow (2011) in the last decade, the theory
of Bayesian persuasion, and more generally, information design, has been studied
extensively. Even though this framework has been used to analyze numerous ap-
plications theoretically,8 there is barely any empirical work building directly on a
Bayesian persuasion model.9 Only very recent theoretical contributions provide more
readily applicable conditions for the characterization of the optimal information
structure and solution methods, which are applicable in empirically relevant settings
with continuous state space and continuous action space of the receiver (Kolotilin,
2018; Dworczak and Martini, 2019; Kolotilin, Mylovanov, and Zapechelnyuk, 2022)
and additional constraints (Dworczak and Kolotilin, 2019; Boleslavsky and Kim,
2021; Doval and Skreta, 2022). These results from the current frontier of theoretical
research constitute the basis for my empirical model and the novel numerical solution
algorithm I develop.

The previous theoretical literature on reputation in online markets focuses mainly
on the role of rating systems in maintaining quality and preventing moral hazard and
adverse selection; see, for instance, Tadelis (2016) and Klein, Lambertz, and Stahl
(2016).10 However, this strand of literature does not consider that platforms may
exploit a strategic design to influence customers’ willingness to choose the platform
over competitive alternatives.

8See Kamenica (2019), Bergemann and Morris (2019), and Bergemann and Ottaviani (2021) for
extensive overviews of the current state of the literature. The applied theory papers closest
related to mine are the applications to matching markets (Romanyuk and Smolin, 2019),
grading in schools (Ostrovsky and Schwarz, 2010; Boleslavsky and Cotton, 2015), financial
markets (Duffie, Dworczak, and Zhu, 2017), and media censorship (Kolotilin, Mylovanov, and
Zapechelnyuk, 2022).

9Dranove and Jin (2010) provide a survey of earlier theoretical and empirical papers on certification
and quality disclosure before the recent advances in the theory of information design in the last
decade.

10Relatedly, Rossi (2021) investigates theoretically and empirically how competition between Airbnb
hosts affects the role of ratings in encouraging host effort.
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The most closely related approach to this paper in studying the design of a
rating system as the choice of an information structure is taken in a series of recent
theoretical contributions by Saeedi and coauthors. Hopenhayn and Saeedi (2022b)
derive welfare-optimal rating systems in competitive markets with adverse selection
based on vertical seller quality but with an exogenous prior distribution. Hopenhayn
and Saeedi (2022a) solve the same problem when the planner can use only a limited
number of signals. Saeedi and Shourideh (2020) study the design of rating systems in
the presence of both adverse selection and moral hazard. Similar to this paper, their
model results in an information design problem with endogenous prior. However,
their analysis differs from my model in that prices and costs for quality provision are
increasing in the vertical quality level, and the maximization objective is a weighted
average of the surplus of different types of sellers. Vellodi (2021) studies the role of
ratings as a barrier to entry and how particular designs can alleviate this problem.

On the other hand, on the empirical side, to my knowledge, the only other paper
that structurally estimates a Bayesian persuasion game is Xiang (2022). She studies
conflicts of interest of Chinese doctors, who may coarsen information about the
benefits of surgical treatment to persuade patients to undergo surgery, which is
financially more attractive for doctors than the alternative of drug treatment. In
this context, she estimates a persuasion model with binary action space (surgery/no
surgery) by Maximum Likelihood. In contrast, the model presented in this paper
features a continuous action space, the share of customers choosing Airbnb. This
share is derived from a discrete choice demand model, estimated jointly with the
persuasion game by GMM. Moreover, this paper develops a strategy for identifying
and estimating the parameters of the prior distribution of the Bayesian persuasion
game, which are fixed in Xiang (2022).
Liao (2021) studies the identification and estimation of a rational inattention

discrete choice model à la Matějka and McKay (2015) with Bayesian persuasion
with an application to Fox News persuading voters to vote for the Republican Party.
Unlike in this paper, in his setting, the unobserved state is the idiosyncratic shock in
the random utility model, and his identification strategy relies on the presence of
markets without the influence of a persuader.

Vatter (2021) studies the design of US Medicare Advantage provider quality scores
in a structural model and eventually solves for the rating design that optimizes market
outcomes. In contrast to this paper, he estimates supply and demand responses to
the rating design from exogenous changes in how rating scores are calculated and does
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not assume that the observed outcomes result from an optimal or profit-maximizing
information disclosure problem. Other closely related work on structural estimation of
information disclosure games, which relies like this paper on an optimality assumption
of observed disclosure patterns, is found in the accounting and finance literature,
where variants of the Dye (1985) model are estimated (Bertomeu, Ma, and Marinovic,
2020; Bertomeu, Marinovic, Terry, and Varas, 2022).

Fréchette, Lizzeri, and Perego (2022) study in lab experiments if different commu-
nication games, including Bayesian persuasion, lead to the theoretically expected
outcomes regarding information transmission.
Moreover, there is empirical work on the determinants of online rating informa-

tiveness and rating inflation. This literature is mainly concerned with the specific
mechanisms which can lead to overly positive ratings (Luca, 2016; Schoenmüller, Net-
zer, and Stahl, 2018; Filippas, Horton, and Golden, 2022; Fradkin, Grewal, and Holtz,
2021).11 However, these studies do not address platforms’ incentives to explicitly
discourage more informative ratings.

The most closely related empirical papers on the competition between Airbnb and
hotels are Farronato and Fradkin (2022) and Schaefer and Tran (2020), but their
demand estimations and welfare analyses do not consider the role of ratings and the
design of rating systems as a choice variable of the platform.

2. The Basic Mechanisms
In this section, I introduce a simple stylized Bayesian persuasion model that allows
me to illustrate the basic intuition of why a profit-maximizing rating system does not
feature perfect information transmission and how this affects hosts’ and customers’
welfare. For this purpose, I abstract from ratings’ role in disciplining hosts’ moral
hazard and focus exclusively on their role in persuading future customers. Moreover,
I keep constant host participation, prices, and observable quality characteristics,
which will all be moving parts in my structural model presented in Section 4.

On top of observable quality characteristics like location, size, and amenities, each
Airbnb listing has an unobserved quality component ω ∈ R that adds to the utility a
customer derives from booking this listing. Within a market, this unobserved quality
component is distributed according to distribution F with density f(ω). Throughout

11Relatedly, Mayzlin, Dover, and Chevalier (2014) and He, Hollenbeck, and Proserpio (2021) study
outright manipulation of ratings, which can also lead to inflation.
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the paper, I focus on the case where F is a normal distribution.12 While potential
customers know the prior distribution F , the only informative signal they have about
the unobserved quality component of a specific listing is its rating s ∈ S, where the
signal space S can be interpreted as the set of possible ratings (e.g., 1-5 stars).

The fundamental assumption to model Airbnb’s rating system design as a Bayesian
persuasion problem is that the platform can choose and commit to the information
structure. In this context, this means that Airbnb can fully determine the mapping
from unobserved quality ω to ratings s. As discussed in more detail in Section 3.1,
this assumption can be justified by several design elements the platform can use to
influence this mapping. Formally, an information structure is a measurable mapping
π : R→ ∆(S).
There is a unit mass of risk-neutral potential customers who consider booking

Airbnb listings. Given their prior F and information structure π, for every rating
s ∈ S, they form their posterior belief about the unobserved quality ω of a listing
according to Bayes’ rule. The posterior expected quality enters additively customers’
expected utility for booking an Airbnb listing. Customers will choose Airbnb if their
expectation of the unexpected quality component lies above their reservation value
r ∈ R. These reservation values of potential customers are distributed according
to distribution H with density h(r). In my structural model, this distribution of
reservation values will be derived from a discrete choice demand model in which
customers may choose between Airbnb, hotels, and staying at home. Throughout
the paper, I focus on the case in which the distribution of reservation values is
unimodal. A unimodal distribution with more customers with reservation values in
an intermediate range than at the extremes appears natural in most applications.
Commonly studied demand systems in modern Empirical Industrial Organization
(logit, nested logit, and in many cases also mixed logit) yield such a unimodal
distribution as well.

If ratings were perfectly informative (i.e., if each quality was mapped into a different
signal), the probability that a customer chooses Airbnb, which equivalently can be

12All the results in this section do not depend on the normality assumption but hold true with
any prior distribution with a strictly positive density (Kolotilin, Mylovanov, and Zapechelnyuk,
2022). The normality assumption will be needed to keep the structural model with endogenous
host effort tractable (Section 4).
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interpreted as the expected market share of Airbnb, would be given by

ρAfull =
∫
R
f(ω)

[∫ ω

−∞
h(r)dr

]
dω (1)

=
∫
R
H(ω)︸ ︷︷ ︸
=ρA(ω)

dF (ω),

under the assumption of independence of reservation values r and unobserved quality
ω. In this discrete choice context, the cumulative distribution function of reservation
values H can also be interpreted as the conditional choice probability function for
Airbnb depending on posterior means, or, on an aggregate level, as the share of
customers who would choose Airbnb for a given posterior mean m. As such, in the
structural model in Section 4, this function will be referred to as ρA(m).
The Bayesian persuasion approach reveals that if Airbnb wants to maximize its

expected market share ρA (which for fixed prices is equivalent to maximizing profits),
it can do better than fully revealing ratings. As the expected market share of an
information structure π depends on posterior beliefs only through the distribution
of posterior means it induces, it is convenient to treat the distribution of posterior
means G(m) directly as the choice variable of the platform. Therefore, the platform’s
Bayesian persuasion problem of designing a profit-maximizing rating system can be
written as

max
G

∫
R
H(m)dG(m)

subject to the constraint that the prior F is a mean-preserving spread of the dis-
tribution of posterior means G, which captures that posteriors must be consistent
with Bayesian updating (Blackwell, 1953; Kolotilin, 2018; Gentzkow and Kamenica,
2016).

Figure 2 illustrates this Bayesian persuasion problem graphically. The black line
in the bottom panel depicts the density f(ω) of unobserved Airbnb quality. The
solid blue line in the top panel plots the conditional choice probability for Airbnb as
a function of posterior expected quality, H(m). Recall that this conditional choice
probability function coincides with the cumulative distribution function of reservation
values for the choice of Airbnb. As the distribution of reservation values is unimodal,
this conditional choice probability function is S-shaped.13

In the case of an S-shaped conditional choice probability function, an upper-
13A function H(x) is S-shaped, if there exists a unique inflection point x̄ such that H is convex for

all x < x̄ and concave for all x ≥ x̄.

10



Figure 2: Upper-Censoring Solution for S-Shaped Objective Function

Notes: The solid blue line in the top panel plots the probability that a customer chooses Airbnb
over other options as a function of the posterior mean of believed unobserved Airbnb quality,
H(m), derived from a nested logit demand system. The dashed blue line corresponds to the
optimal price function of the dual problem (Dworczak and Martini, 2019). The bottom panel
plots the prior density of unobserved quality f(ω) (black line) and the distribution of posterior
beliefs under platform-optimal upper-censoring ratings (blue mass). Under platform-optimal upper-
censoring ratings, unobserved Airbnb quality ω is fully revealed below the threshold ω∗ (empirically,
gradual steps from 1–4.5 stars), and above this threshold, all qualities are pooled into one single
signal–empirically, the 5-star rating–that induces the posterior expected quality of the conditional
expectation of the distribution above this threshold ω̃ = E[ω|ω ≥ ω∗].

censoring information structure maximizes the platform’s market share and profits.
That is, quality is fully revealed below a certain threshold ω∗ (empirically, gradual
steps from 1–4.5 stars), and above this threshold, all qualities are pooled into one
single signal (empirically, the 5-star rating) that induces the posterior expected quality
of the conditional expectation of the distribution above this threshold, E[ω|ω ≥ ω∗].
The quality threshold ω∗ is determined by the trade-off of improving the choice

probability of lower qualities by including them in the pooling signal as long as it
does not dampen the choice probability of the infra-marginal higher qualities too
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much. Formally, the threshold ω∗ is implicitly defined by

H(ω̃)−H(ω∗)
ω̃ − ω∗

= h(ω̃) (2)

with ω̃ = E[ω|ω ≥ ω∗]. This result for S-shaped posterior mean objective functions
was first shown by Kolotilin (2018), but the duality approach proposed by Dworczak
and Martini (2019) also allows a straightforward derivation of this solution. The
derivation of my novel solution algorithm for my structural model (Appendix B.2)
builds on this latter approach because it generalizes to persuasion problems with
additional constraints (Dworczak and Kolotilin, 2019).

Kolotilin, Mylovanov, and Zapechelnyuk (2022) solve the same persuasion problem
with an S-shaped objective function with a first-order approach which allows for a
nice intuitive explanation of why upper-censoring is indeed optimal. In the setting
of Figure 2, consider an alternative objective function that coincides with the actual
S-shaped objective up to ω∗, but above ω∗ is given by the dashed straight line. This
alternative objective function is convex and therefore allows for an interpretation as
the Bernoulli utility function of a risk-loving agent. Hence, under this alternative
objective, fully revealing signals, which induce the riskiest lottery over m, are optimal.
The construction of the dashed line according to equation 2 with tangency to the
S-shaped function at ω̃ guarantees that the value of the alternative objective under
fully revealing signals coincides with the value of the actual objective under the
suggested upper-censoring signals. As the alternative objective is weakly greater
than the actual objective at any point, it is not possible that the actual objective
can assume a value higher than the maximum of the alternative objective. Hence,
the upper-censoring information structure must be optimal.

Welfare Consequences. This stylized model also allows for an intuitive illustra-
tion of the mechanisms behind the welfare consequences of upper-censoring ratings
for the platform, hosts of different quality, and customers relative to full information.
These are the welfare effects that I will be able to quantify with my structural model.

Hosts with quality above the expectation of the pooling signal ω̃ are actually harmed
by the upper-censoring as their probability of being booked decreases. Consequently,
also the revenue Airbnb can generate from these hosts decreases. However, this
loss is more than made up for by the increased booking probability for listings with
intermediate quality ω ∈ [ω∗, ω̃].

Airbnb’s demand gains and losses from upper-censoring relative to fully informative
ratings are illustrated in Figure 3. The graph shows the space of unobserved quality
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Figure 3: Demand Gains and Losses from Upper-Censoring vs. Full Information

Notes: The graph shows the space of unobserved quality ω in the horizontal dimension and
reservation values r in the vertical dimension. The shading in the background represents a heat map
of their joint density, where a darker shade means more mass in this area. Under full information,
the expected Airbnb market share is given by the integral of this density over the area under the
gray 45-degree line; under upper-censoring ratings, the expected Airbnb market share is calculated
as the integral under the blue curve. Integrating the density in the background over the green and
red triangles yields the demand gains and losses of upper-censoring relative to fully revealing ratings,
respectively. The parameters of the underlying nested logit demand system and the distribution of
ω are the same as in Figure 2.

ω in the horizontal dimension and reservation values r in the vertical dimension.
The shading in the background represents a heat map of their joint density, where a
darker shade means more mass in this area.
As expressed in equation 1, under full information, the expected Airbnb market

share is given by the integral of this density over the area under the gray 45-degree
line; that is, the area where customers’ reservation value lies below the quality level.
With upper-censoring ratings, the expected Airbnb market share is calculated as the
integral under the blue curve, which coincides with the 45-degree line up to ω∗, but
then jumps to ω̃ and plateaus at this level for all the qualities in the pooling signal.

Integrating the density in the background over the green triangle yields Airbnb’s
gained demand from upper-censoring relative to fully revealing ratings, resulting from
higher booking probabilities of listings in the intermediate range [ω∗, ω̃]. Integrating
over the red triangle gives Airbnb’s lost demand resulting from lower booking
probabilities of listings in the range [ω̃,∞). As evidenced by the darker shading of
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the green triangle, the demand gains of upper-censoring outweigh the losses. This
is the case because, with a unimodal distribution of reservation values (the vertical
dimension in Figure 3), there are more customers with reservation values in this
intermediate range, whom the upper-censoring newly persuades to book on the
platform, than there are customers with very high reservation values, whom the
platform loses by the pooling of qualities. Platform profit and average host profits
are higher under upper-censoring, but the latter average effect hides a substantial
redistribution of profits from high-quality to medium-quality hosts.
Since customers enter a ‘lottery’ when booking a 5-star listing, some will end up

with a realized quality above their expectation and some below. However, these
differences cancel each other out exactly when aggregating over all customers due
to the Bayesian updating constraint. Instead, actual welfare losses derive from a
distortion of choices relative to the full information scenario. Consider a customer
with a reservation value slightly below ω̃, say 0, in the setting of Figure 2. Such a
customer chooses Airbnb when seeing the pooling signal, but he might end up with
a lower realized quality, for instance, -1, and if he had known this quality ex-ante,
he would not have chosen Airbnb but one of the other options, and he would have
been better off. Vice-versa, consider a customer with reservation value above ω̃, say
3. Such a customer will never choose Airbnb because a 5-star rating is not enough
to convince him. However, if he could have identified the very best quality listings,
he may have wanted to choose Airbnb, and he would have been better off than with
his actual choice.

Comparative Statics. My structural estimation will rely on the assumption that
Airbnb chooses the optimal information structure in different markets in response
to the respective market environment. Therefore, it is vital to understand how
different market conditions influence the solution of the platform’s information
design problem. For this purpose, I will now build on the stylized model with
an S-shaped objective function from Figure 2 and discuss intuitively some basic
comparative statics for the upper-censoring solution.14 The two graphs in Figure
4 visualize how the cutoff for upper-censoring, and thus the share of 5-star ratings,
change with differently shaped conditional choice probability functions resulting from
different market conditions. These comparative statics with respect to the ex-ante
attractiveness of the platform and the degree of substitutability with other options
give a first idea of how cross-market variation can be used to infer the shape of the
14Kolotilin, Mylovanov, and Zapechelnyuk (2022) discuss comparative statics for the solution of

Bayesian persuasion problems with S-shaped posterior mean objective functions more formally.
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Figure 4: Comparative Statics of the Upper-Censoring Solution

Notes: Left panel: comparative statics with respect to the ex-ante attractiveness of the platform;
right panel: comparative statics with respect to the degree of substitutability between the platform
and other options. In light blue in the background of both panels, the baseline scenario from
Figure 2 is repeated. The conditional choice probability functions in these examples are derived
from a nested logit demand system with Airbnb and hotels in one nest, similar to the specification
introduced in Section 4. In the left panel, the Airbnb price is reduced. In the right panel, the
nesting parameter, which captures the correlation in idiosyncratic tastes for Airbnb and hotels, is
increased.

unobserved quality distribution.
The left panel considers the case in which the platform is relatively more attractive

ex-ante compared to the baseline scenario from Figure 2. As a point of reference,
this baseline scenario is displayed again in light blue in the background. Examples
of such an increase in Airbnb’s ex-ante attractiveness include lower Airbnb prices
relative to hotels or a lower average hotel quality in a market. Customers are more
likely to choose the platform for any given posterior quality. This is represented in
a leftward shift of the conditional choice probability function. As the platform is
already more attractive on average, it needs to disclose less information to persuade
customers.15 The threshold quality moves to the left, more lower qualities are pooled
with high qualities, and we have more 5-star ratings.

The right panel considers the case of a higher degree of substitutability between
Airbnb and hotels compared to the baseline scenario from Figure 2 in light blue
in the background. Reservation values are shifted from the extremes towards an

15The economic intuition behind this result is very similar to the applications of information design
under sender commitment to grading in schools (Ostrovsky and Schwarz, 2010; Boleslavsky and
Cotton, 2015). Harvard can apply a very coarse grading scheme as the students are considered
good enough on average to be qualified for a good job even without much further information
through grades. Low-ranked universities, instead, optimally apply a much more granular grading
scheme such that at least the best students can be identified as qualified for a good job.
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intermediate range, and the conditional choice probability function gets steeper in
this intermediate range. In this case, more lower qualities can be included in the
pooling signal without harming the higher qualities too much. The share of 5-star
ratings increases.

3. Background, Data, and Reduced-Form Patterns

3.1. The Airbnb Rating Systems

Airbnb, founded in 2008, is the biggest peer-to-peer marketplace for short-term
accommodation with a revenue of US$ 6.0B in 2021, generated from 300.6M booked
nights of 6M listed properties worldwide (Airbnb, 2022). It provides a platform to
match supply and demand, process payments, and ensure safe transactions, not least
through its rating system that allows previous customers to share their experience
and satisfaction with a specific listing.
During my sample period of the years 2018 and 2019, Airbnb displayed average

customer ratings of a listing on a five-star scale rounded to the nearest half-star.
Effectively, this yields a 9-step scale from 1, 1.5, ..., to 5 stars.16 In particular, a
listing exhibited 5 stars if its average rating is at least 4.75.

I assume that star ratings are the only informative signals through which potential
guests can learn about an unobserved quality component of a specific Airbnb listing.17

This unobserved quality component may include aspects like the property’s cleanliness
and kindness and availability of the host, but it does not include anything that could
be learned from the description of a listing (e.g., location, amenities, size and type
of the property, etc.). The distribution of this unobserved listing quality may feature
a certain natural variance that goes beyond what yields a direct monetary reward to
hosts or is directly incentivized by the platform, for instance, due to differences in
hosts’ intrinsic pride, motivation, kindness, or greed.
The key assumption for modeling the design of a rating system as a Bayesian

16Towards the end of 2019, Airbnb started testing and eventually switched en-
tirely to displaying average ratings with the precision of two decimal places. See
https://www.airbnb.com/resources/hosting-homes/a/in-case-you-missed-it-3-product-updates-
to-catch-up-on-114 (accessed on September 11, 2021).

17I abstract from the role of ‘superhost’-badges and textual reviews. I deem star ratings more
important as they are usually the first anchor point customers look at and are easily comparable
across listings. Reading a representative sample of textual reviews of several listings would be
much more time-consuming. My model is only concerned with vertical quality, for which I deem
the average star rating to be a better proxy, while individual textual reviews might be more
informative about the quality of the match with a specific customer; thus, horizontal quality.
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persuasion problem is that the platform can freely choose the information structure.
In the context of ratings, this means that Airbnb can perfectly determine the mapping
from unobserved quality to star ratings. Loosely speaking, Airbnb sets the ‘rules’ for
ratings, and the customers comply.
There are several elements in the design of the rating system that Airbnb can

use to explicitly or implicitly encourage accurate or biased reviews and therefore
justify this assumption.18 While the platform might not be able to pin down the
aforementioned conditional probabilities precisely with these design elements, it can
influence them substantially toward the desired direction.

The most powerful design element works by attaching severe negative consequences
to bad ratings. Airbnb threatens hosts with exclusion from the platform if their
average rating falls below a certain threshold (see Appendix Section D.1 for some
anecdotal evidence). These critical thresholds are not announced publicly, but folk
wisdom on the internet says that this critical value is around 4.6 and, importantly
for my empirical strategy, varies by city.
By attaching such serious consequences to ratings, the platform prescribes a

certain interpretation of the ratings, which eventually pins down the information
structure. That is, 5 stars mean ‘anything varying from good to excellent and
beyond’, and everything below is different levels of ‘not good enough’. These attached
consequences induce Airbnb hosts to ‘educate’ their guests about the meaning of
ratings and encourage them heavily to obey the platform’s preferred rating scale,
for instance, through ‘customer instructions’ in leaflets they leave for their guests.
One example of such a note, found in an online forum for Airbnb hosts, is shown in
Figure 5. More are collected in Appendix Section D.1.19

Given this influence, it appears reasonable that Airbnb can choose and commit
to an information structure in the sense of a Bayesian persuasion model. While
the studied effects of rating systems often focus on their role in mitigating adverse
selection and moral hazard, this Bayesian persuasion approach reveals that there
is a second effect of ratings impacting customers’ perception of Airbnb relative to
other alternatives, which the platform can exploit to its benefit.

18See the review paper by Luca (2016) for an overview of other design elements of rating systems
that might influence the informativeness of ratings, including the role of reciprocity of ratings,
fake/promotional ratings, and the induced social distance/proximity between the two parties of
a transaction.

19Uber drivers display similar ‘information sheets’ on the back of the front seats of their cars; see
Figure D.4.
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Figure 5: Anecdotal Evidence: Rating Instructions by Airbnb Hosts

Source: https://community.withairbnb.com/t5/Hosting/How-can-we-Hosts-quot-educate-quot-
Guests-about-how-the-AirBnB/td-p/680774/page/3 (accessed on September 24, 2022).

3.2. Data

This project draws mainly from two commercial data sources: Transparent Intelligence
(TI) for Airbnb data and STR for hotel data.

Airbnb. TI provides web-scraped data from short-term rental platforms, including
the Airbnb API. This includes all the publicly available information on the Airbnb
homepage, such as listings’ locations, amenities, availability, and ratings. Moreover,
TI uses Machine Learning to predict actual occupancy and transaction prices for
every listing.20 I obtained from TI monthly aggregated supply and performance data
for the universe of all individual Airbnb listings in the US for the years 2018 and
2019. Since my analysis focuses on the competition between Airbnb and hotels, I
restrict the sample to Airbnb listings that can be considered comparable to a hotel
room. These are ‘entire homes’ (i.e., entire houses not shared with the host) with up
to two bedrooms and ‘private rooms’ (i.e., private rooms in a house shared with the
host), which make up 71.1% of all listings. The excluded listings are ‘entire homes’

20The critical challenge is to distinguish if a night unavailable in a listing’s calendar is blocked by
the host or actually booked. TI’s algorithms are trained with historical data from times when
Airbnb had still made this information public and relies on variables such as the common lead
time of bookings.
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with more than two bedrooms and rooms shared with the host.

Hotels. STR is a major accommodation industry data provider that tracks hotels’
performance worldwide by conducting periodic surveys asking about hotels’ room
capacity, daily occupation, and generated revenue. These surveys cover nearly 75%
of US hotel rooms, including 97% of chain hotels and most significant independent
hotels. For hotels not participating in the survey, STR imputes outcomes based on
the performance of similar hotels. From STR, I obtained trend reports for 56 markets
in the US containing most major cities and holiday travel destinations, covering more
than half of all the Airbnb listings in the US in the period studied.21,22 The data
includes daily room availability, occupation, and prices aggregated at the market
level, as well as a breakdown of hotel capacity into six quality scales (from economy
to luxury). Moreover, daily occupation rates allow me to calculate the share of
compression nights within a specific time period. These are nights in which hotels hit
their capacity constraints and are commonly defined as nights with an occupation
above 90%.

Additional Data Sources. The Airbnb and hotel data is complemented with
data from various sources.

In January 2022, I web-scraped from the major hotel-booking platform booking.com
customer ratings of more than 94% of all hotels in the US, which will serve as a
proxy of hotel quality in the demand estimation and whose distribution is plotted in
the right-hand panel of Figure 1.

Moreover, I retrieve tourist points of interest (POI) from Open Street Map (as of
December 2021), whose relative count in different markets will serve as a proxy for
the attractiveness of different travel destinations in the demand estimation.

I rely on the land unavailability measures from Lutz and Sand (2019) as a measure
of hotel supply constraints, which will serve as an instrument for hotel prices in the
demand estimation.
Rental data from the Department of Housing and Urban Development will serve

as a proxy for the opportunity cost of offering a property in the short-term instead of
the long-term rental market and as an instrument for Airbnb prices in the demand
estimation.23 As a proxy for opportunity costs of providing additional host effort, I

21The exact percentage of all Airbnb listings in the United States covered by the 56 geographical
markets varies, depending on the month, between 55.6% and 57.8%.

22The market selection was partially constrained by the availability from the side of STR. For
instance, data for Las Vegas were not available.

23In particular, I retrieve ‘fair market rents’ (FMRs) for a one-bedroom apartment, which correspond
to the 40th percentile of the rent distribution at the zip code level. To aggregate to STR markets,
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Table 1: Summary Statistics

mean sd min p50 max

Hotels

Price [US$] 139.12 34.61 85.06 132.44 262.86
Demand [M] 10.85 8.82 1.11 9.16 37.66
Supply [M] 15.26 11.61 1.67 12.65 46.51
Occupancy 0.69 0.06 0.57 0.69 0.87
Share Compression Nights 0.08 0.08 0.00 0.06 0.48
Share ≥ upper-midscale 0.55 0.09 0.36 0.55 0.83
No. Hotels 411.8 277.9 53 389.5 1267
avg booking.com rating 7.92 0.22 7.28 7.93 8.43

Airbnb

Price [US$] 115.37 33.82 66.57 109.48 201.17
Demand [M] 1.07 1.21 0.13 0.72 7.65
Supply [M] 2.10 2.23 0.29 1.38 13.56
Share 5 Star 0.72 0.08 0.50 0.72 0.88
# Ratings 26.1 11.4 6.7 26.1 59.9
Entire Home 0.66 0.14 0.40 0.64 0.96
Bedrooms 1.3 0.1 1.1 1.3 1.7
Occupancy 0.50 0.07 0.29 0.50 0.65
Occupancy (non5star/5star) 0.72 0.10 0.41 0.72 0.96

Other

Unavailable Land Share 32.47 18.31 6.18 29.41 74.06
Population [M] 2.07 1.93 0.07 1.66 9.40
log tourist poi per 100k inhab. 3.80 0.71 2.50 3.70 5.63
Daily Rent [US$] 39.33 14.25 21.33 34.65 94.60
Daily Wage [US$] 161.71 46.18 85.86 149.43 376.14
Market Size [M] 62.13 57.82 4.59 49.87 282.03
Area [1,000 km2] 320.25 846.90 0.88 67.31 4,221.94

Notes: The table shows summary statistics (mean, standard deviation, minimum, median, and
maximum) of all variables used in this paper across 112 markets (56 geographical regions x 2 years).

rely on average wages from the U.S. Bureau of Labor Statistics Quarterly Census of
Employment and Wages.24 Finally, I use population and household demographics
data from the 2010 US census.

Market Definition and Aggregation. For the definition of geographical mar-
kets, I stick to the units proposed by STR, which can be considered the industry
standard. Table A.1 lists all 56 markets, which I subdivided into urban and non-urban
(i.e., mainly regions at the seaside and around national parks) travel destinations.

I aggregate both Airbnb and hotel data for these 56 STR markets at the yearly level

I take the average of these FMRs over all covered zip codes weighted by the number of available
Airbnb rooms.

24The STR markets are assigned the annual average weekly wage (all industries) of the MSA,
County, or State with the largest geographical overlap.
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for 2018 and 2019, yielding a total of 112 observations. Note that I work with less
granular data in the geographical and the temporal dimension than papers focusing
exclusively on estimating demand for short-term accommodation (Farronato and
Fradkin, 2022; Schaefer and Tran, 2020). This is because the emphasis of this project
is on the impact of the design of the rating system. The key modeling assumption
presented in Section 3.1 prescribes that Airbnb can manipulate the information
structure at the unit of observation, and customers understand this information
structure and respond rationally (5 stars in market A have a different interpretation
than 5 stars in market B). It is not realistic that both manipulation and accurate
interpretation of the information structure happens at a more local level. Neither is
it realistic that this happens at a high temporal frequency since the displayed average
ratings are cumulative and therefore adjust only slowly. Hence, my estimation relies
mainly on variation across larger geographical markets rather than over time within
markets.

Market size is defined proportional to the population in each market, where for the
two markets with the most rooms offered (hotels and Airbnb combined) per capita, I
set market size equal to the total capacity.

Table 1 shows summary statistics of all relevant variables across the 112 observa-
tions. On average, 72% of Airbnb listings have a 5-star rating but across markets this
share varies substantially between 50% and 88%. Average Airbnb prices lie about
17% under hotel prices. Hotel capacity exceeds Airbnb capacity by a factor of 7 on
average. Losing a 5-star rating decreases a listing’s average occupancy by 28%.

3.3. Reduced-Form Patterns

Before moving to the full structural model, in this section, I will show some cross-
market correlations of the key variables in my structural model, and I will discuss
how the comparative statics of the persuasion model presented in Section 2 and
their interplay with other market mechanisms will help to explain some prominent
reduced-form cross-market patterns in the data.

Figure 6 shows binned scatter plots of two key endogenous variables of my structural
model, the Airbnb-hotel price difference (Airbnb prices minus hotel prices) and the
share of Airbnb 5-star ratings, with hotel prices, an impactful shifter of Airbnb’s
ex-ante attractiveness, on the horizontal axes. The price difference in the left-hand
panel of Figure 6 is decreasing almost linearly in the hotel price with a slope less
than one in absolute value. Airbnb prices increase on average only by 29 cents for a
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Figure 6: Cross-Market Correlations of Hotel Prices with Endogenous Variables

Notes: The graphs show binned scatter plots of the Airbnb-hotel price difference (left panel) and
the share of Airbnb 5-star ratings (right panels) with the average hotel price across 112 markets on
the horizontal axes.

one-dollar increase in hotel prices.
The intuition behind this pattern, which also consistently arises in numerical

solutions of my model for a wide range of parameters, is the following. Imagine the
hotel price increases. This means that ceteris paribus, Airbnb is more attractive to
customers. To increase profits, Airbnb can react in two ways. Either they increase
their price as well, or they induce more 5-star ratings as they are more attractive on
average and do not need to provide much more additional information to persuade
customers (recall the left panel of Figure 4 above). It turns out that the optimal
solution is a combination of both. Airbnb increases the price, but by a much smaller
margin than the increase in hotel prices; hence, the downward slope in the price
difference. In summary, the model features a substitutability between higher Airbnb
prices and less information in the form of a higher share of induced 5-star ratings.
Given this substitutability and the discussed comparative statics with respect to

the ex-ante attractiveness of the platform, we would expect the share of Airbnb 5-star
ratings to be increasing in the hotel price (as higher hotel prices make Airbnb more
attractive ex-ante, Airbnb needs to provide less information to persuade consumers).
However, empirically (right-hand panel of Figure 6), we observe a hump-shaped
relationship between 5-star ratings and hotel prices, with an initial increasing portion
for low hotel prices but eventually a sharply decreasing portion for high hotel prices.
This pattern arises because the ‘attractiveness mechanism’ is not the only force at
play, but there are additional market mechanisms, which are also reflected in my
structural model, pushing in the opposite direction.
To understand the whole picture, we need to consider how hotel prices correlate

with other market conditions, which I will treat as exogenous in my model (Figure
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Figure 7: Cross-Market Correlations of Hotel Prices with Exogenous Variables

Notes: The graphs show binned scatter plots (blue circles), linear fit lines (red lines), and Pearson
correlation coefficients (‘R’) of the share of compression nights (top left panel), daily wages (top
right panel), and daily long-term rents (bottom panel) with respect to the average hotel price across
112 markets on the horizontal axes.

7). First, hotel prices have a strong positive cross-market correlation with the share
of compression nights per year (top left panel of Figure 7). In compression nights,
hotels hit their capacity constraints, and the platform does not face competition from
hotels for the marginal customer. Hence, markets with a higher share of compression
nights feature a lower degree of substitutability between Airbnb and hotels (when
aggregating yearly). Recall from the discussion of the comparative statics in Figure
4 above that a lower degree of substitutability leads to a lower share of 5-star ratings
under the profit-maximizing information structure.
Second, hotel prices have a strong positive cross-market correlation with wages

(top right panel of Figure 7). Wages may be a shifter of hosts’ opportunity costs of
devoting more time to increase the quality they can provide, for instance, by cleaning
the apartment more thoroughly or interacting more closely with their guests. As
such, higher wages may lead to less host effort and a shift of the prior distribution of
qualities to the left. This means that at a higher wage level for a given cutoff quality
for upper-censoring, we expect a lower share of 5-star ratings.
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Third, hotel prices have a strong positive cross-market correlation with long-
term rents (bottom panel of Figure 7). Long-term rents may be a shifter of hosts’
opportunity costs of offering their property for short-term rental on Airbnb in the first
place. The share of 5-star ratings depends not only on the cutoff for upper-censoring
but also (through the denominator) on how many lower-quality listings there are on
the platform. On the one hand, with a higher long-term rent level, it may be less
attractive to list lower-quality apartments on Airbnb, which are relatively less likely
to be booked. On the other hand, with a higher hotel and Airbnb price level, the
expected revenue of offering such low-quality apartments, even if booked infrequently,
is higher. Taken together, the expected effect of this ‘participation mechanism’ on
the Airbnb 5-star–hotel price relationship is ambiguous.
In summary, we have one potential force pushing towards an increasing cross-

market relationship between hotel prices and the share of Airbnb 5-star ratings (the
direct ‘attractiveness mechanism’), two potential forces pushing towards a negative
relationship (the ‘substitutability’ and ‘effort’ mechanisms), and one ambiguous force
(the ‘participation mechanism’). The empirical model I will introduce in the next
section is built to allow for all these mechanisms and their non-linear interplay and
can replicate the hump-shaped relationship we observe in the data.

4. Structural Model
In this section, I set up a structural empirical model of the short-term accommodation
market, focusing on the profit-maximizing design of the Airbnb rating system.
Furthermore, I outline a novel numerical solution algorithm for Bayesian persuasion
problems with additional constraints like the one arising in this set-up.

Overview. At the core of the model, there is a Bayesian persuasion problem with
moral hazard in the spirit of Boleslavsky and Kim (2021). The profit-maximizing
platform (sender) designs a rating system (information structure). Unlike in the
simple model from Section 2, now the rating system does influence not only the
distribution of customers’ (receiver) posterior beliefs about quality and hence their
decision between booking on Airbnb or another option. In also influences the
representative host’s (agent) effort choice and hence the actual quality distribution
of listings on the platform. The platform’s objective function for this Bayesian
persuasion problem depends on customers’ conditional choice probabilities of the
platform relative to a hotel or staying at home, which are derived from a nested logit
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demand system with some adjustments for hotels’ capacity constraints.

Agents. The model features three classes of agents. A continuum of consumers
faces a discrete choice problem between booking on Airbnb, a hotel, and the outside
option of staying at home or arranging some alternative form of accommodation
outside the market (e.g., with friends or relatives). The platform Airbnb designs
the rating system by choosing the profit-maximizing information structure and sets
profit-maximizing prices. A representative host decides which properties to list on
Airbnb and how much costly effort to exert to maintain quality.

Prices. Hotel prices in geographical market n in year t are exogenously fixed at
pHnt and the Airbnb price is pAnt = pHnt + pnt. Hence, pnt is the price difference between
Airbnb and hotels, which may be positive or negative.25 I assume that the price
difference pnt is chosen by the platform uniformly for all listings in a market as part
of the profit-maximization problem.26,27

Airbnb obtains a fixed share τ = 0.16 of the price of every transaction made on the
platform as commission.28 Therefore, for fixed prices, profit maximization implies
that the platform aims to maximize the share of customers choosing the platform
over the other options.

Quality. The quality of hotels is assumed to be fully observable ex-ante as a
function of the STR classification and informative booking.com ratings. The quality
of the service provided by the platform depends both on observable characteristics and
25I use the price difference relative to hotels instead of price levels as the choice variable for Airbnb

as it maps more closely to the comparative statics of the Bayesian persuasion model with respect
to the ex-ante attractiveness of Airbnb relative to hotels.

26This assumption is backed by Airbnb suggesting prices to hosts and actively encouraging
them to comply with these suggestions. See https://community.withairbnb.com/t5/Airbnb-
Updates/Airbnb-Answers-Pricing-suggestions/td-p/790645 (accessed on September 11, 2021).
Moreover, Airbnb’s and hosts’ incentives in choosing prices are very much aligned apart from
the impact the price has on the hosts’ participation decision.

27There is a recent literature studying how prices affect ratings of listings through several mechanisms
(Carnehl, Stenzel, and Schmidt, 2021; Carnehl, Schaefer, Stenzel, and Tran, 2021), and vice-versa
(Teubner, Hawlitschek, and Dann, 2017). Since my analysis is at a higher level of aggregation,
I abstract from such dependencies and assume uniform prices within a market. Alternatively,
you may interpret pAnt as a price index for market nt that lets actual prices within the market
correlate with observable Airbnb quality characteristics. However, to study the rating system
design in this Bayesian persuasion framework, prices need to be orthogonal to unobservable
listing quality and ratings such that ratings remain the only informative signal for unobserved
quality.

28The actual Airbnb fee structure in the period studied was more complicated, with service fees split
between hosts (about 3%) and guests (about 13%), with the precise amount varying depending
on factors like reservation subtotal, the length of stay, and the listing characteristics. As there
is, however, no indication that fee structure and levels varied systematically between different
regions in the US, I assume, for simplicity, a uniform fee of 16% of the transaction price as paid
by the customers. Moreover, any additional costs like cleaning fees should be understood to be
part of the Airbnb price pAnt.
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an unobserved quality component, which, as discussed in the previous section, may
include aspects like the cleanliness of the property and the kindness and availability of
the host. This unobserved component is modeled as a real-valued random variable ω
whose distribution Fωnt

(ω; ent)29 depends on the cutoff quality for hosts’ participation
ωnt and hosts chosen effort level ent.

Host Participation and Effort. To capture the aggregate of many small Airbnb
hosts’ decisions, in each market nt, there is a representative host who owns a portfolio
of listings with quality distribution F , where F is a normal distribution with mean
ν + ent and variance σ2.30 I assume that the distribution of unobserved quality of
potential Airbnb listings net of the additional host effort component, pinned down
by the parameters ν and σ, is the same across all markets.
The representative host faces two decisions. First, he can shift the unobserved

quality distribution of his portfolio uniformly to the right by exerting more costly
effort ent. I assume the quadratic cost function c(ent) = knte

2
nt.

Empirically, I parametrize the marginal effort cost knt as a function

knt = κ0 + κ1wagent (3)

of average wage levels in market nt as the monetary opportunity cost of devoting
more time to improve the quality of the listing, for instance, by cleaning the property
more thoroughly or interacting more closely with the guests.
Second, the representative host decides which properties of his portfolio actually

to list on Airbnb. He needs to pay a fixed cost proportional to the mass of listings
he decides to offer on the platform. As the expected revenue of a listing is increasing
in its quality, the host optimally chooses a cutoff value ωnt such that he offers only
qualities above this threshold. The overall fixed cost is given by

∫∞
ωnt

Tntf(ω; ent)dω
with cost parameter Tnt > 0.

Empirically, I parametrize Tnt as a function

Tnt = η0 + η1rentnt + εTnt (4)

of daily long-term rent levels in market nt as the monetary opportunity cost of

29I adopt the convention of identifying probability distributions by their cumulative distribution
functions. Moreover, Fω and fω refer to the cdf and pdf of the distribution resulting from
truncating F from below at ω.

30As I see the variation of the unobserved quality component as a result of differences in hosts’
motivation that is drawn from a very large population of potential hosts, I consider the normal
distribution a reasonable assumption.
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offering a property for short-term instead of long-term rental.31 The cost shock εTnt
is unobserved to the econometrician and to the platform.

In summary, the original distribution F (ω; 0) can be interpreted as the unobserved
quality distribution of all potential listings in a market without additional host
effort incentivized by the rating system. The representative host’s participation
decision truncates this distribution from the left at ωnt, and his effort decision
shifts the distribution uniformly to the right by ent. The resulting truncated and
shifted distribution Fωnt

(ω; ent) can be interpreted as the empirical distribution of
unobserved quality of the actual listings on the platform in market nt. While the
initial distribution F (ω; 0) by assumption is the same across all markets, the eventual
quality distribution of actual listings Fωnt

(ω; ent) will differ in each market.

Information. Through the design of the rating system, the platform commits
to an information structure that determines the ratings of ’previous customers’.
’Previous customers’ are not modeled explicitly. Through the design of the rating
system, the platform can determine the average rating ’previous customers’ give
conditional on the quality, which they observe perfectly once having booked a specific
listing.32 Future customers exploit these ratings as the only signal for the unobserved
quality ω of a specific offer and update their beliefs according to Bayes’ rule. Formally,
an information structure is a measurable mapping πnt : R→ ∆(S) for some signal
space S which can be interpreted as the set of possible ratings (e.g., 1-5 stars).
Ex-ante, I do not restrict S.

Customers’ Choice. Moving to the demand side of the model, every individual
customer i maximizes expected utility by choosing between booking an Airbnb listing
(A), a hotel (H), or the outside option of staying at home (0).33 Customer i’s
expected utilities for these three options conditional on observing signal s ∈ S in

31Farronato and Fradkin (2022), who study demand in the short-term accommodation market over
the years 2011 to 2015, suggest market demographics such as the share of single or childless
households as shifters for Airbnb supply with the idea that for families it is more costly to host
a stranger in their house than for singles. In my more recent sample (years 2018 and 2019), such
demographics have very little explanatory power for cross-market variation in Airbnb supply. I
attribute this difference to Airbnb shifting more and more from occasional peer-to-peer supply
to properties owned by institutional investors for the sole purpose of offering them for short-term
rental. Therefore, I work with monetary opportunity costs, such as long-term rent and wages,
instead.

32I assume that there are sufficiently many ’previous customers’ such that there are informative
ratings for all listings.

33The outside option 0 may also include alternative forms of accommodation organized outside of
the market, like lodging a friend’s or relative’s place.
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market n and year t are given by, respectively,

UA
int = γg + ψ log(poin)− αpAnt + qAntβA + ξAnt︸ ︷︷ ︸

=δA
nt

+Eµs
nt

[ω] + ιint + (1− ζ)εAint; (5)

UH
int = γg + ψ log(poin)− αpHnt + qHn βH + ξHnt︸ ︷︷ ︸

=δH
nt

+ιint + (1− ζ)εHint; (6)

U0
int = 0 + ε0

int.

I assume a nested logit structure of the stochastic, idiosyncratic utility shocks with
Airbnb and hotels in one nest. That is, ιint + (1− ζ)εAint, ιint + (1− ζ)εHint, and ε0

int

are assumed to be iid TIEV across the population in each nt and independent of ω.
The nesting parameter ζ governs the correlation of preferences between Airbnb and
hotels; that is, a larger value of ζ implies a stronger correlation of the idiosyncratic
preference components of Airbnb and hotels as opposed to the outside option.

The parameters γg represent the value of traveling to a destination in the group g,
where g can be urban (u) or non-urban (nu); see Table A.1 for the classification. By
poin, I denote the count of OSM tourist points of interest (e.g., museums, beaches,
memorials, etc.) per 100,000 inhabitants in the region n. The Airbnb and hotel prices
in market nt, respectively, are denoted by pAnt and pHnt. The vectors qAnt and qHn collect
observable Airbnb and hotel quality characteristics. In the case of Airbnb, these
are the share of private rooms, entire home studios, and entire home two-bedroom
apartments in a market, with entire home one-bedroom apartments as the omitted
category. For hotels, these are the average booking.com ratings and the share of
hotel rooms in a market classified by STR as Upper Midscale and higher.34

As standard in the demand estimation literature, ξAnt and ξHnt are product char-
acteristic or demand shocks, whose realization customers know when making their
choice, but which are unobserved to the econometrician. Moreover, I assume that
the realizations of these shocks are also unobserved to the platform and the hosts
when they make their profit-maximizing decisions. The added-up linear components
of Airbnb and hotel utility that are observable to customers are denoted by δAnt and
δHnt, respectively.
The posterior expectation of the unobserved Airbnb quality component ω when

observing rating s in market nt is denoted by Eµs
nt

[ω].

Hotels’ Capacity Constraints. Previous papers estimating demand in the

34STR classifies hotel rooms into six classes. These are, from high to low, Luxury, Upper Upscale,
Upscale, Upper Midscale, Midscale, and Economy.
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short-term accommodation industry have shown that Airbnb’s main impact happens
in times and places where hotels are capacity-constrained (Farronato and Fradkin,
2022; Schaefer and Tran, 2020), for instance, in New York City on New Year’s Eve. At
such so-called compression nights, the marginal Airbnb customer, whom persuasive
ratings want to target, can effectively only choose between Airbnb and the outside
option. This choice between only two options yields different substitution patterns
than the choice between all three options and thereby influences the choice of the
optimal information structure; recall the intuitive discussion in Section 2. Since the
share of compression nights scnnt varies substantially across markets (Figure 7), it is
essential to take this into account in the empirical model.

I assume that at compression nights, commonly defined as occupancy above 90%,
hotels operate at maximal market share ρ̄Hnt equaling 95% of capacity.35 On such
nights, the marginal customer chooses only between Airbnb and the outside option,
yielding an expected Airbnb market share for a given posterior mean m = Eµs [ω]
and price difference pnt of

ρA,cnnt (m, pnt) = (1− ρ̄Hnt)
exp{δAnt(pnt) +m}

1 + exp{δAnt(pnt) +m}
.

When hotels’ capacity constraints do not bind, the marginal customer has the
choice between all three options, and the expected Airbnb market share for posterior
mean m and price difference pnt is given by the nested logit choice probability

ρA,¬cnnt (m, pnt) =
exp

{
δA

nt(pnt)+m
1−ζ

} (
exp

{
δH

nt

1−ζ

}
+ exp

{
δA

nt(pnt)+m
1−ζ

})−ζ
1 +

(
exp

{
δH

nt

1−ζ

}
+ exp

{
δA

nt(pnt)+m
1−ζ

})1−ζ

resulting from the full demand system specified above.

Market Shares and Platform Profits. The overall expected Airbnb market
share as a function of posterior means and the price difference is then given by
ρAnt(m, pnt) = scnntρ

A,cn
nt (m, pnt) + (1− scnnt)ρA,¬cnnt (m, pnt). Recall from the discus-

sion in Section 2 that for fixed prices and host effort, the Airbnb market share
is proportional to Airbnb profits. Hence, for fixed pnt, ρAnt(m) coincides with the
cumulative distribution function H of customers’ reservation values for choosing
Airbnb, depicted in the top panels of Figure 2, the objective function of the Bayesian
persuasion problem conditional on posterior means.

35As I am looking at a relatively short time horizon, it is reasonable to assume that hotel capacity
ρ̄Hnt is exogenous. To keep the demand system tractable, I treat scnnt as exogenous as well.
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The aggregate market share for Airbnb is then given by

ρA =
∫ ∞
ωnt

∫
S
πnt(s|ω)ρAnt (Eµs [ω]) dsdF (ω; ent)

=
∫ ∞
ωnt

ρAnt(m)dGnt(m). (7)

The first expression explicitly states the double integral over qualities ω and condi-
tional ratings s|ω resulting from the information structure πnt. The second expression,
instead, exploits the shortcut that the expected market share of an information
structure depends on the receiver’s (customers’) posterior beliefs only through the
posterior means m = Eµs [ω] that it induces, and integrates directly with respect to
the distribution Gnt of posterior means.36 Consequently, platform profits can also be
expressed in terms of posterior means only. That is,

ΠA
nt = τ(pHnt + pnt)︸ ︷︷ ︸

Airbnb’s share of
transaction price

∫ ∞
ωnt

ρAnt(m, pnt)dGnt(m)︸ ︷︷ ︸
expected Airbnb
market share

. (9)

This particular case of a Bayesian persuasion problem with such an objective
function has been studied extensively in the theoretical literature. Any information
structure πnt is a garbling of the fully revealing information structure that generates
a distinct signal realization in each state ω and thereby induces a distribution of
posterior means equal to the prior distribution F . Hence, given the prior F , a
distribution of posterior means Gnt is induced by some information structure if
and only if F is a mean-preserving spread of Gnt (Blackwell, 1953; Gentzkow and
Kamenica, 2016). As it is common practice in this literature, I can write down the
platform’s optimization problem directly over the distribution of posterior means,
with F being a mean-preserving spread of Gnt as an additional constraint.

Host Objective. Assuming additive separability of the effort and participation

36Along the same lines, the expression for the aggregate hotel market share is given by

ρHnt = (1− scnnt)
(
F (ωnt; ent)

exp{δH}
1 + exp{δH} (8)

+
∫ ∞
ω

nt

exp
{
δH

nt

1−ζ

}(
exp

{
δH

nt

1−ζ

}
+ exp

{
δA

nt+m
1−ζ

})−ζ
1 +

(
exp

{
δH

nt

1−ζ

}
+ exp

{
δA

nt+m
1−ζ

})1−ζ dGnt(m)
)

+ scnntρ̄
H
nt.
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costs, the representative host’s objective function is given by

ΠRH
nt = (1− τ)(pHnt + pnt)︸ ︷︷ ︸

hosts’ share of
transaction price

∫ ∞
ωnt

∫
S
πnt(s|ω)ρAnt (Eµs [ω], pnt) dsdF (ω; ent)︸ ︷︷ ︸

expected Airbnb
market share

−
∫ ∞
ωnt

TntdF (ω; ent)︸ ︷︷ ︸
listing
costs

− knte
2
nt︸ ︷︷ ︸

effort
costs

(10)

= (1− τ)(pHnt + pnt)
∫ ∞
ωnt

ρAnt (m, pnt) dGnt(m)−
∫ ∞
ωnt

TntdF (ω; ent)− knte2
nt.

Recall that the representative host has two choice variables, the cutoff quality
for listing ω and the effort level e, which both will be determined by the receptive
first-order conditions.

For given prices, the host’s first order condition for the optimal choice of the cutoff
quality ω is independent of his effort choice and depends on signals and customers’
belief structure only at ω. If all players correctly anticipate full revelation around
this threshold, the host’s optimal cutoff quality is given by

ωnt = (ρAnt)−1
(

Tnt
(1− τ)(pHnt + pnt)

)
. (11)

The host’s first order condition for the profit-maximizing effort choice reads, after
some rearrangements following Boleslavsky and Kim (2021) (see Appendix B.1 for
the derivations), as

(1− τ)(pHnt + pnt)
∫
S
ρAnt (Eµs [ω], pnt)Eµs

[
∂f(ω; ent)/∂ent
fωnt

(ω; ent)

]
dG̃nt(µs)

= Tntf(ωnt; ent) + 2kntent, (12)

where G̃nt is the distribution of posterior beliefs µs.
Note that in the general case, this first-order condition does depend on posterior

beliefs not only through posterior means but also the posterior expectation of the ratio
∂f(ω;ent)/∂ent

fωnt
(ω;ent) appears. Abstracting from the truncation, this ratio can be interpreted

as the score (i.e., the derivative of the log-likelihood function) of the maximum
likelihood estimation of the mean of the prior distribution. On a very intuitive level,
it tells how strongly one is inclined to infer e from any observed ω.37 Therefore, on

37See Boleslavsky and Kim (2021) for further discussion on the role of this ratio.
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the left-hand side of the first order condition 12, we have the marginal benefits of
exerting more effort in the form of an increased booking probability for all listings
weighted by the expected value for the customers’ statistical estimate of hosts’ effort,
and on the right-hand side the marginal costs.
Thanks to the normality assumption of the prior, the ratio ∂f(ω;ent)/∂ent

fωnt
(ω;ent) reduces

to a linear function of ω and the first order condition can be restated depending on
posterior means only:

∫ ∞
ω

ρAnt(m, pnt)(m− ν − ent)dGnt(m) = σ2[Tntf(ωnt, ent) + 2kntent]
(1− τ)(pHnt + pnt)[1− F (ωnt, ent)]

. (13)

Thus, thanks to the normality assumption, the platform’s optimization problem,
including the additional constraint for host effort, depends on posterior beliefs only
through means, which keeps the model tractable by allowing me to make use of the
results from above mentioned theoretical literature for this special case.38

Timing. The timing of the game is summarized in Figure 8. The game unfolds
in three stages. In the first stage, the platform designs and publicly reveals the
information structure πnt and chooses a uniform price difference pnt. To keep the
complex Bayesian persuasion model tractable, I assume that the platform makes
these choices supposing that all unobservable cost and demand shocks are zero (i.e.,
εTnt = ξAnt = ξHnt = 0).39 In the second stage, the representative host observes price,
information structure, and cost shock and decides how much costly effort to exert
and which properties to list. Also here, for tractability I assume that he makes these
choices supposing that demand shocks equal zero (i.e., ξAnt = ξHnt = 0). Between the
second and the third stage, ’previous customers’ produce ratings compliant with
πnt. In the third stage, customers observe information structure, price, ratings, and
demand shocks and decide between Airbnb, hotels, and the outside option.

All agents are risk neutral and maximize their expected profits or expected utility.
Observable quality characteristics of the platform and hotels and the hotel price are
assumed to be exogenous and known by all agents.

Equilibrium Definition. I solve for the Perfect Bayesian Equilibrium of this
game in each market nt. An equilibrium consists of a price (difference) pnt, an
information structure πnt, representative host’s effort ent and cutoff quality ωnt (for

38This is the only place where the normality assumption is needed for tractability of the model. A
similar model with exogenous host effort, like the one presented in Section 2, can be solved (and
with some parametric assumptions potentially estimated) for an arbitrary prior distribution.

39The solution of a Bayesian persuasion problem taking expectations over all these dimensions
would be beyond the capabilities of the existing theoretical literature.
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Figure 8: Model Overview and Timing

each possible signal and price), a customers’ posterior belief system Mnt = {µs}s∈S ,
and market shares ρAnt, ρHnt, which satisfy the following properties: (i) given any price
pnt, information structure πnt, and customers’ belief system Mnt, the host’s effort
ent and cutoff quality ωnt maximize his expected profit ΠRH

nt ; (ii) customers’ belief
system Mnt is Bayes-consistent with the host’s effort ent, cutoff quality ωnt, and the
information structure πnt, and market shares ρAnt, ρHnt result from optimal choices
given this belief system; and (iii) price pnt and information structure πnt maximize
the platform’s expected profit ΠA

nt.

Platform Problem with Equilibrium Conditions as Constraints. Finding
the equilibrium of this game can be reduced to the solution of the platform’s profit
maximization problem of choosing a price difference pnt, a targeted host effort level
ent, and an implied distribution of posterior means Gnt(m) with the equilibrium
conditions as constraints. As derived above, these constraints are (i) that the prior
distribution needs to be a mean-preserving spread of the distribution of posterior
means (which essentially means that customers update their beliefs according to
Bayes’ rule) and (ii) that the targeted effort level ent satisfies the representative
host’s first order condition. In summary, we have

max
pnt,ent,Gnt

τ(pHnt + pnt)
∫ ∞
ωnt

ρAnt(m, pnt)dGnt(m) (14)

s.t. Fωnt
(·; ent) is a mean preserving spread of Gnt∫ ∞

ωnt

ρAnt(m, pnt)(m− ν − ent)dGnt(m) = σ2[Tntf(ωnt; ent) + 2kntent]
(1− τ)(pHnt + pnt)[1− F (ωnt; ent)]

.

Solution Algorithm. I exploit recent theoretical results from the duality ap-
proach to Bayesian persuasion (Dworczak and Martini, 2019; Dworczak and Kolotilin,
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2019)40 to derive a novel numerical solution algorithm for the platform’s maximization
problem. A similar algorithm may be applicable more broadly for the numerical
solution of Bayesian persuasion problems with additional constraints. Detailed
derivations of the algorithm are provided in Appendix B.2.
In summary, I apply backward induction optimization with three nested loops.

In the outer loop, I maximize the objective function over price difference and
target effort. This means that in the middle loop, for a fixed price difference and
target effort, only the profit-maximizing information structure remains to be found,
resulting in a Bayesian persuasion problem with moral hazard à la Boleslavsky and
Kim (2021). Results from said duality theory allow me to solve this constrained
Bayesian persuasion problem by repeatedly solving unconstrained Bayesian persuasion
problems and minimizing an objective over a shadow-price-like parameter. This
minimization is done in the middle loop, and the unconstrained problems are solved
in the inner loop.

Solution for S-shaped Objective Function. In the inner loop of the algorithm,
I repeatedly solve an unconstrained Bayesian persuasion problem with a continuous
state space (i.e., R, the unobserved Airbnb quality), a continuous action space of the
receiver (i.e., [0, 1], the share of customers choosing the platform), and an S-shaped
posterior-means objective function. Recall from the derivation in Section 2 that this
objective function corresponds to the cumulative distribution function of customers’
reservation values for choosing Airbnb. The S-shape means the distribution is
unimodal, with more reservation values in an intermediate range than extremely low
or high ones. Examples of demand systems that yield such an S-shaped objective
function are logit and nested logit models.

The objective function in the inner loop of my solution algorithm is derived from
a more involved demand system accounting for hotels’ capacity constraints and is
slightly perturbed due to the effort constraint. However, it turns out that for all
empirically relevant parameter values, the S-shape of this function is preserved.

40The price-theoretic duality approach to Bayesian persuasion shows an analogy between the
sender’s information design problem and finding Walrasian equilibria of a ‘persuasion economy’.
In the dual problem, the sender acts as a consumer purchasing posterior beliefs at certain prices
using the prior distribution as an endowment. The Bayesian updating constraint translates into
a single firm having the technology to garble the state. This approach yields a tractable solution
method for persuasion problems in which the sender’s utility depends only on the expected
state by finding the equilibrium price function of the dual problem (Dworczak and Martini,
2019). Moreover, this approach generalizes to Bayesian persuasion problems with additional
constraints (Dworczak and Kolotilin, 2019).
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Therefore, any interior solution41 of this unconstrained problem with an S-shaped
objective function in the inner loop still follows the upper-censoring structure, where
the cutoff quality ω∗nt is defined according to equation 2. To tie this model prediction
to the data, I interpret the pooling signal as 5-star ratings and the more granular
revelation of lower qualities as 1–4.5 stars.

5. Estimation
Overview. I estimate the empirical model specified in the previous section by
GMM. The empirical specification includes 16 parameters to be estimated: κ0 and κ1

defining hosts’ effort costs in equation 3, η0 and η1 defining hosts’ participation cost
in equation 4, and the demand parameters specified in equations 5 and 6. The latter
are the price coefficient α, coefficients for tourist POIs (ψ), and observed Airbnb
and hotel quality characteristics (βA and βH), as well as the nesting parameter ζ
and mean ν and standard deviation σ of the unobserved Airbnb quality distribution.
I treat observable Airbnb and hotel characteristics, the number of tourist points
of interest, wages and long-term rents, the share of hotel compression nights, and
hotel capacity as exogenous. The estimation targets 24 moments specified below, a
combination of orthogonality conditions and levels.

A main identifying assumption is that observed market outcomes (demand, Airbnb
prices, share of 5-star ratings) result from the platform choosing an information struc-
ture and price optimally in each market, responding to relevant market characteristics
(recall the comparative statics in Figure 4), and customers rationally updating their
beliefs accordingly. I exploit cross-market variation of N = 112 observations from 56
geographical regions over two years, as specified in Section 3.2. In each step of the
GMM minimization routine, I solve my model for the platform’s optimal choices in
all markets.42

41If

ρAnt

(
EFωnt

[ω]
)
> ρAnt(ω) +

(
EFωnt

[ω]− ω
)

(ρAnt)′
(
EFωnt

[ω]
)
,

we have full pooling, i.e., revealing noting about ω, as a boundary solution.
42The estimation is carried out in the programming language Julia (Bezanson, Edelman, Karpinski,

and Shah, 2017) on a 32-core ScienceCloud server at the University of Zurich, using the Simulated
Annealing algorithm (Goffe, Ferrier, and Rogers, 1994; Goffe, 1996) to find the global minimum
of the GMM objective function. This probabilistic global optimization algorithm takes over
200,000 objective function evaluations to converge. Only the high computational performance
of the Julia language (one objective function evaluation solving the model and inverting market
shares for 112 markets in less than one second) allows me to estimate this complex model with
endogenous host effort by reducing computation time by an order of magnitude compared to a
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Recall that the main interest for the counterfactual experiments is to recover
the distribution of unobserved Airbnb quality. For this purpose, I assume that the
effortless distribution of unobserved quality of potential Airbnb listings, parametrized
by ν and σ, is the same across all markets.43

Demand Inversion. Since the aggregate market shares (equations 7 and 8) are
given as integrals over unobserved Airbnb quality, an analytical inversion of the
resulting demand system to recover the structural error terms ξ is not feasible. The
problem is reminiscent of the inversion of random coefficient demand systems à la
Berry, Levinsohn, and Pakes (1995) (BLP) with the difference that here we integrate
over heterogeneous qualities of the supplied service instead of over heterogeneous
consumer tastes. Since the sufficient conditions for a unique solution of the demand
inversion provided by Berry (1994) (i.e., ρAnt is differentiable with respect to δAnt and
δHnt with

∂ρA
nt

∂δA
nt
> 0 and ∂ρA

nt

∂δH
nt
< 0, and ρHnt is differentiable with respect to δHnt and

δAnt with
∂ρH

nt

∂δH
nt
> 0 and ∂ρH

nt

∂δA
nt
< 0) are satisfied, the demand system can be inverted

numerically to recover the structural error terms ξ just as in BLP.
Note that even though this inversion transforms the demand system into a linear

system, I do not estimate the remaining demand parameters entering the observable
utility components δ in linear regressions outside the main GMM estimation routine,
as it is commonly done in BLP models. This is because, in my model, the observable
utility components δ also enter the non-linear part (the distribution G with respect to
which the market shares are integrated) as the optimal information structure depends
on them. Therefore, all 16 parameters of the model are estimated simultaneously in
the main GMM routine. The high computational cost of each additional parameter in
such a non-linear estimation explains my parsimonious parametrization of the demand
model with a relatively small number of additional observable quality characteristics
as control variables.

Inversion of Host Participation. To disentangle the impact of different factors
on the quality distribution and observed outcomes, it is convenient also to recover εT ,
the structural error term in hosts’ opportunity cost for participation as introduced
in equation 4. For this purpose, in each step of the GMM estimation routine and
for each market, I construct an empirical equivalent of ω by assuming that Airbnb’s
maximum attainable market share after hosts’ participation choice, 1− F (ω; 0), is

MATLAB implementation of the same algorithm.
43Similar assumptions have been made by Bertomeu, Ma, and Marinovic (2020) and Bertomeu,

Marinovic, Terry, and Varas (2022) to estimate models of information disclosure by managers.
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Table 2: Target Moments for GMM Estimation

orthog. ξ̂A ⊥ { 1u, 1nu, qA, log(poi), rent, qH }
conditions ξ̂H ⊥ { 1u, 1nu, qH , log(poi), unavailable land, qA }

p̂− p ⊥ { 1, pH , rent, wage }
ε̂T ⊥ { 1, rent, wage }

levels mean squared error of predicted share of 5-star ratings = 0
occupancy non-5-star listings/occupancy 5-star listings = prediction

Notes: The indicator functions 1u and 1nu identify the groups of urban and non-urban travel
destinations, as classified in Table A.1. The remaining variables are defined in equations 3, 4, 5,
and 6. Hats indicate model predictions. Excluded instruments are highlighted in red.

equal to the empirically observed Airbnb capacity divided by the market size.44

Given this empirical value of ω, I invert equation 11 to obtain an empirical equivalent
of the opportunity cost T , which then allows me to calculate the structural error
term εT in equation 4.

Moments. Table 2 summarizes the 24 targeted moments, a combination of
orthogonality conditions and levels.45

The first rows contain the usual moments for nested logit demand estimation.
The error terms ξ are set orthogonal to all the exogenous covariates of equations 5
and 6 and excluded instruments for prices and inside market shares. In particular,
I instrument for Airbnb prices with the daily long-term rent as a supply shifter,
motivated by my model of host participation (equation 4), and for hotel prices with
the share of unavailable land (Lutz and Sand, 2019) in the respective market. In
the latter, I follow Farronato and Fradkin (2018) who find that lack of suitable
building ground is a significant driver restricting the supply of additional hotel rooms,
therefore leading to higher hotel prices. Moreover, as standard in the literature on
nested logit demand estimation for the identification of the nesting parameter ζ, I
use BLP-style instruments for the inside market shares. More precisely, I use the

44This assumption essentially means that for δA =∞, the demand model would yield a predicted
Airbnb market share equal to the current Airbnb capacity (keeping all the remaining moving
parts on the supply side constant). Hence, it is abstracting from Airbnb’s supply being elastic
with respect to prices or anticipated demand. While this would be a quite strong assumption at
a daily level, with my yearly aggregation, it is reasonable. The elastic portion of Airbnb supply
stems mainly from occasional peer-to-peer hosts (instead of professional investors who offer
their apartments all year round). Those peer-to-peer hosts might be willing to host someone
in their place for a couple of days a year when the price is high enough, but probably not 365
days, even if the price was always this high.

45For the construction of the GMM objective function, orthogonality moments derived from the
same equation are weighted by the homoskedasticity-optimal weighting matrix. In addition,
across the equations, moments are rescaled to a comparable order of magnitude.
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observable quality characteristic of the other option with the strongest first stage.46

As shown in the third row, I chose to set the error term of the predicted price
difference orthogonal to a constant and the hotel price because the price differences
predicted by the model are generally well approximated by a linear function of hotel
prices (see Figure 9), as well as to the covariates of the cost equations that shift the
prior quality distribution. Along the same lines, the error term for host opportunity
costs of participation εT is set orthogonal to all the covariates of equations 3, 4 for
host effort and participation costs, which can affect the prior quality distribution
directly.

In addition to these orthogonality moments, I target two moments in levels. First,
I set the mean squared prediction error of the share of 5-star ratings, calculated as

̂share5starnt = 1− F (ω∗nt; ent)
1− F (ωnt; ent)

,

equal zero. Since in the light of the research question, the share of 5-star ratings
is a key outcome of my model, which should be matched well in every market, in
this way, I put increased emphasis on it instead of just matching the mean across
markets. Moreover, I target the expected occupancy ratio of non-5-star and 5-star
listings, whose model prediction is calculated as

̂occ_ratnt =

∫ ω∗
nt

ωnt
ρA

nt(m)dGnt(m)

F (ω∗
nt;ent)−F (ωnt;ent)

ρAnt(ω̃nt)
.

Identification. The complexity of the model precludes a formal proof of identifi-
cation. However, the targeted moments are picked such that there is a clear intuition
of how, ceteris paribus, they are informative about specific parameters.

Identification of the observable market and quality characteristic and price param-
eters in equations 5 and 6 follows the usual logic in the demand estimation literature
via the orthogonality conditions between structural error terms ξ and covariates as
well as instruments (first two rows of Table 2). Note that the set of parameters
identified in this way also includes the mean of the effortless unobserved quality
distribution ν, which can also be interpreted as a fixed effect for Airbnb. I use
the instruments discussed above to alleviate the usual endogeneity concerns about
equilibrium outcomes.
In combination with the assumption on the maximum attainable Airbnb market

46First stage results for all the excluded instruments are displayed in Table A.2.
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share discussed above, which allows me to construct empirical equivalents of ωnt, the
orthogonality conditions between the error term εT and the covariates in the host
participation cost equation 4 (row 4 of Table 2) pin down the respective parameters
η0 and η1.
The occupancy ratio of non-5-star and 5-star listings ̂occ_ratnt is informative

about the standard deviation of the unobserved quality distribution σ. Intuitively, if
σ is larger and the distribution is more dispersed, the difference in the expected choice
probabilities for non-5-star and 5-star listings increases, and ̂occ_ratnt decreases. As
an essential identifying assumption is that σ is constant across markets, I target a
simple average of this occupancy ratio across markets. Empirically, the observed
variance of this ratio across markets is relatively small and does not appear to
correlate systematically with any other influential market characteristics such as
prices (see Figure A.1). While these empirical patterns cannot prove that the
identifying assumption is accurate, they do not provide evidence against it.
Finally, we are left with the parameters κ0 and κ1, which pin down the marginal

effort cost as defined in equation 3. This cost eventually defines the effort level ent,
which shifts the mean of the prior distribution of Airbnb quality and determines
its ex-ante attractiveness vis-a-vis the alternatives. The numerical solutions show
that the model features an inherent substitutability between higher prices and less
information (i.e., pooling of more qualities in the 5-star rating) for the platform’s
response to an increased attractiveness ex-ante; recall the intuitive discussion in
Section 2. Given this substitutability, for a fixed shape of the objective function
ρAnt(m), the combination of Airbnb price level and the share of 5-star ratings allows
me to infer the mean of the prior distribution and the corresponding marginal effort
cost.

6. Results
Parameter Estimates and Interpretation. Table 3 displays the estimated pa-
rameter values and standard errors. To facilitate the interpretation, the parameters
of the demand equations can be transformed into monetary values by dividing them
by the price coefficient α.
The main parameter of interest for the counterfactuals, the standard deviation

of the unobserved Airbnb quality distribution of potential listings σ (before the
left-truncation through hosts’ participation choice), has a monetary equivalent of
US$94.64, corresponding to 68% of the average price paid for one night booked on
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Table 3: Parameter Estimates

Parameter Standard
Estimate Error

Price (α) [5,6] 0.01353 0.00137
FE urban destination (γu) [5,6] 0.54 0.22
FE non-urban destination (γnu) [5,6] 0.51 0.12
Log OSM tourist POIs (ψ) [5,6] 0.32 0.08

Demand Share ‘private room’ (βA1 ) [5] -7.82 1.70
Coefficients Share ‘entire home’ studio (βA2 ) [5] -0.73 2.77

Share ‘entire home’ 2 bedroom (βA3 ) [5] -5.69 2.20
Avg. bookig.com rating (βH1 ) [6] 1.52 0.76
Share ≥ Upper Midscale (βH2 ) [6] 0.81 0.31
Nesting parameter (ζ) [5,6] 0.232 0.573

Unobs. Mean (ν) -1.51 0.39
Airbnb Std. dev. (σ) 1.28 0.27
Quality
Effort Constant (κ0) [3] 55.12 19.41
Costs Wage coefficient (κ1) [3] 0.12 2.02
Listing Constant (η0) [4] 35.14 1.47
Costs Rent coefficient (η1) [4] -0.007 0.09

Notes: GMM estimates and standard errors of the model parameters. The numbers in brackets
refer to the equations the parameters are defined in. Standard errors are calculated based on the
usual analytical formula for GMM standard errors, based on numerical derivatives of the objective
function at the optimum.

Airbnb. Hence, my estimates suggest a substantial degree of unobserved quality
heterogeneity of potential listings, which could completely overturn the surplus
derived from ex-ante observable characteristics. The standard deviation of unobserved
quality of actual listings (after the left-truncation through hosts’ participation choice)
ranges between US$27.16 and US$45.50 across different markets, with an average
of US$34.66. Hence, the information provided through the rating system with
informative ratings at the bottom of the distribution allows the platform to filter out
the worst qualities reducing the dispersion in the unobserved quality distribution by
up to 70%.
The positive (and statistically significant) estimates of βH confirm that the at-

tractiveness of hotels increases in their quality, measured by the STR classification
and booking.com ratings. Even though quite noisy, the estimates of βA suggest that
one-bedroom entire homes (the omitted category) are the most attractive Airbnb
listing type. Urban destinations appear to be slightly more attractive than non-urban

40



Table 4: Average Demand Elasticities

Airbnb Hotel Outside
Airbnb -1.94 0.90 -
Hotel 0.10 -1.55 -
Outside 0.04 0.39 -

Notes: Nested logit demand elasticities for non-compression nights (i.e., nights in which customers
have the choice between all three options) averaged across 112 markets.

ones (γu > γnu), and the estimate of ψ shows that more tourist points of interest in
a market increase its attractiveness.
On the supply side, hosts’ average opportunity cost of listing their properties on

Airbnb (η0) is US$35.14 per night and appears to be mostly independent of the
long-term rent level. Though very noisy, the estimate of κ1 suggests that a one-dollar
increase in average wages increases hosts’ opportunity cost for effort provision by 12
cents.

Demand Elasticities. Table 4 shows the resulting demand elasticities averaged
across markets. Despite the relatively coarse demand estimation strategy relying
mainly on the cross-sectional variation between rather large geographical regions
(recall the discussion at the end of Section 3.2), the estimated elasticities range in
a comparable order of magnitude to those of Farronato and Fradkin (2022) and
Schaefer and Tran (2020), who focus on demand estimation exclusively with much
more granular data.

Model Fit. Figure 9 repeats the binned scatter plots of Airbnb 5-star ratings
and the Airbnb-hotel price difference with the average hotel prices on the horizontal
axes from Figure 6 and overlays it with the model predictions for the estimated
parameters. The predicted values fit very closely the empirical cross-market patterns
of these two crucial targeted moments; that is, they match well both the linear
negative relationship between hotel prices and price difference and the hump-shaped
relationship between hotel prices and the share of Airbnb 5-star ratings, which were
discussed in Section 2.

Estimation Results without Demand Instruments. Appendix Table A.3
shows parameter estimates and standard errors in an alternative specification without
demand instruments. As expected, given the usual endogeneity concerns regarding
prices and inside market shares, without instruments, the price parameter α and nest-
ing parameter ζ are underestimated compared to the specification with instruments.
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Figure 9: Model Fit

Notes: The graphs show binned scatter plots of empirical realizations (blue circles) and fitted
model predictions (red crosses) of the Airbnb-hotel price difference (left panel) and the share of
Airbnb 5-star ratings (right panel) with the average hotel price across markets on the horizontal
axes.

As a consequence, also the resulting demand elasticities, which are displayed in Table
A.4, are slightly attenuated. However, the differences between the two specifications
are relatively small, which shows the substantial role the supply-side restrictions (i.e.,
the moments concerning prices and the share of 5-star ratings) play in pinning down
α and ζ. All the remaining parameters are not affected substantially.

7. Counterfactual Experiments
Overview. With the estimated model parameters at hand, I can simulate counter-
factual scenarios with different rating system designs. In particular, I will consider
scenarios with no ratings at all and perfectly revealing ratings to quantify welfare
consequences resulting from the platform’s strategic rating system design, as well
as some intermediate cases. Moreover, my model allows me to disentangle to which
extent welfare changes can be attributed to the role of ratings to incentivize host
effort and to which extent to their role of informing customers. Finally, I will evaluate
the heterogeneous impact of strategic rating design on Airbnb, host, and hotel profits,
depending on Airbnb listing quality. Appendix C contains additional counterfactual
exercises with platform-optimal and consumer-optimal binary ratings.
Market outcomes and welfare measures under different counterfactual scenarios

averaged across markets are summarized in Table 5. The baseline outcomes in
column 1 are those resulting from platform-optimal upper-censoring ratings, which
by assumption, coincide with the empirically observed situation.
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Outcome Measures. All quantities are converted into monetary terms by
division by the estimated price coefficient α. In the case of platform-optimal ratings,
Airbnb and hotel market shares are calculated as stated in equations 7 and 8. In the
counterfactuals with fully revealing ratings, integration is done with respect to the
prior distribution of unobserved Airbnb quality, and in the cases without ratings, the
functions are evaluated at the mean of this prior distribution. The formulas for these
calculations are spelled out in Appendix B.3. Airbnb and host profits per potential
listing are calculated according to equations 9 and 10 in the baseline, with the same
adjustments to the integrals in the counterfactual scenarios as for the market shares.
Profits per actual listing are obtained by dividing profits per potential listing by the
mass of listings the host actually decides to offer on the platform, that is 1−F (ω; e).

Since consumer surplus in discrete choice models is only defined up to an additive
constant, as a measure of the value of Airbnb for customers, I use the Compensating
Variation (CV) (Small and Rosen, 1981) relative to a counterfactual where I remove
Airbnb completely from the choice set.47 Hence, the second-to-last row in Table 5
shows the dollar amount that would need to be paid to every potential customer in a
market ex-ante to make up for the expected utility loss from removing Airbnb from
the choice set, calculated as

CV = 1
α

(
E[max{UA, UH , U0}]− E[max{UH , U0}]

)
, (15)

where expectations are taken both over the idiosyncratic taste shocks and posterior
believed Airbnb quality. The exact formulas for how these expectations are calculated
for the demand system accounting for hotels’ capacity constraints and different choice
sets for the marginal Airbnb customer in compression and non-compression nights
are provided in Appendix B.3.

Note that with rational Bayesian updating of customer beliefs, the ex-ante expected
CV is equal to the average ex-post realized surplus for any information structure.
A correction term for the difference between anticipated and experienced quality,
as suggested by Train (2015), would cancel out when integrating over the quality
distribution.
The value of Airbnb per booked night in the last row of Table 5 is obtained by

47Aggregated over the 56 geographical markets and the years 2018 and 2019, I estimate a CV for
Airbnb of US$12.3B. As a point of reference, for New York City, I estimate a CV for Airbnb of
US$288.9M in 2018 (4.5M booked nights) and US$247.6M in 2019 (7.1M booked nights), which
appears reasonable in comparison to the estimate of US$141.3M in 2014 (1.8M booked nights)
for the same market by Farronato and Fradkin (2022).
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dividing the CV from equation 15 by the Airbnb market share. Airbnb’s average
baseline value per booked night is estimated as 79% of the average Airbnb price.

Informative Roles of Ratings. The informative role of customer ratings can
be subdivided into two parts. First, they allow filtering out the worst qualities
from joining the platform. Second, they enable consumers to learn more about
the exact quality of those properties that are actually listed on the platform. The
counterfactual exercise without any rating system reveals how vital the first role is
for the functioning of Airbnb. The platform-optimal upper-censoring ratings do a
good job in this regard, as they fully reveal the quality for the worst qualities and
those around the participation cutoff ω.

No Ratings. In a counterfactual where I completely remove the customer rating
system (column 2 of Table 5), both these roles get shut down. In this case, the plat-
form is not able to operate at all. Without informative ratings at the bottom to filter
out the worst qualities, potentially everyone could join the platform (ω = −∞), and
no additional host effort can be incentivized (e = 0). Therefore, consumers’ posterior
belief about unobserved quality corresponds to the mean ν of the untruncated prior
distribution F (·; 0). This believed quality is so low that, independent of the price
the platform sets, the probability that customers choose the platform over the other
options is so low that expected host profits are well below the fixed costs T for listing
a property, and no one would want to offer their properties on the platform. Note
that this result is not built into the model specification but is an empirical result for
the estimated model parameters.48

In column 3, I consider an intermediate case, where I fix the Airbnb prices and
hosts’ participation decision (i.e., ω) at their baseline levels to isolate the impact
of the second role of ratings in providing further information about actually listed
properties. Compared to upper-censoring ratings, now customers cannot identify
the worst qualities among those listed on the platform. Their posterior belief about
the unobserved quality of all listings corresponds to the mean of the truncated prior
distribution Fω(·; 0) (i.e., the mean quality of those apartments listed). Airbnb
and host profits decrease, respectively, by 3.31% and 2.07%, and the ex-ante value
of Airbnb to customers is reduced by 5.47% compared to the status quo with
48This counterfactual also reveals that in the absence of Airbnb, its market share of 2.9% would

be divided into a 0.8 percentage points higher hotel market share and a 2.1 percentage points
higher market share of the outside good. The larger increase in the outside market share is in
line with the findings of Farronato and Fradkin (2022) that a large part of Airbnb’s business
is concentrated on compression nights when no additional hotel rooms are available anyhow.
They estimated that in 2014 62% of Airbnb bookings would not have been hotel bookings in a
counterfactual scenario without Airbnb.
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platform-optimal upper-censoring ratings.

Fully Revealing Ratings. While customer and platform interests are aligned
to prevent the worst qualities from joining the platform, this is not the case for
providing full information about the quality of those properties actually listed. In
the counterfactual scenario presented in column 4 of Table 5, which addresses one of
the leading research questions of this paper, I replace upper-censoring ratings with
fully revealing ratings,49 but let Airbnb re-optimize prices and hosts adjust their
effort and participation decisions. With fully revealing ratings, the distribution of
posterior beliefs about quality, which is used to calculate market shares and profits,
corresponds to the truncated prior distribution Fω(·; e).

In this scenario, Airbnb increases the price slightly, confirming the substitutability
between higher prices and less information outlined in the description of Figure 6.
Host effort increases by 7.64%.50 Airbnb and host profits decrease following a market
share decrease of 1.46%. The ex-ante value of Airbnb for customers increases by
2.68%, and the value per actually booked night increases by 3.52%.

Table 6 presents these differences in welfare measures not as averages but aggregated
over the 56 geographical areas (covering about 50% of Airbnb listings in the US) and
two years in my sample. Despite being much more subtle than the impact of removing
the rating system altogether, the aggregate loss in Airbnb consumer surplus due to
their strategic rating system design (i.e., platform-optimal upper-censoring ratings
vs. fully revealing ratings) adds up to a sizable figure of US$288.2M. Moreover,
overall hotel revenue is harmed by US$67.71M, while Airbnb and host profits grow
by US$17.91M and US$102.95M, respectively. Adding up all these numbers also
suggests a negative net welfare impact of strategic rating system design.51

While the increase in Airbnb’s profit resulting from the strategic upper-censoring
rating design might appear small at first glace (making up only about 0.9% of the
profits as predicted by the model), it has to be considered that the Airbnb profit

49While continuous fully revealing ratings will never be implementable practically, they still provide
an insightful benchmark, and the 9-point scale of Airbnb ratings (steps of half stars) should
be able to approximate the consumer welfare gains from fully revealing ratings quite closely.
Wilson (1989) proves that in the general case for a partition with n classes, losses relative to full
information are of order 1/n2, and Hopenhayn and Saeedi (2022a) find that optimal discrete
ratings can approximate full information reasonably well in a similar model of rating system
design.

50Note that fully revealing ratings generally will not maximize induced host effort. In fact, ex-ante,
it is not even clear that fully revealing ratings induce more host effort than upper-censoring
ratings. Hence, this should be seen as an empirical result. Maximizing induced host effort would
be a Bayesian persuasion problem by itself, with a more complex objective function.

51This is within the limitations of the model. For instance, hotel supply is not modeled.
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Table 6: Aggregated Welfare Impact of Strategic Rating System
Design in Monetary Terms

2018 2019 Total
Consumer Surplus [M US$] -127.44 -160.80 -288.23
Hotel Revenue [M US$] -29.68 -38.03 -67.71
Airbnb Profit [M US$] +7.85 +10.06 +17.91
Host Profit [M US$] +44.89 +58.05 +102.95
‘Total Welfare’ [M US$] -104.37 -130.72 -235.09

Notes: Differences in welfare measures between the baseline of platform-optimal ratings (column
1 of Table 5) and the counterfactual of fully revealing ratings (column 4 of Table 5) in monetary
terms aggregated over the 56 geographical markets (covering about 56% of Airbnb listings in the
US).

measure in my model does not take into account any costs of operating the platform.
Airbnb’s financial statements report net losses of US$17M in 2018 and US$674M in
2019 for the worldwide operating company as a whole.52 The comparison with these
actual profit measures reveals that increased profits of US$17.91M from only about
half the US market over two years are not negligible at all and may be worth the
platform’s effort of influencing ratings in said way.

Disentangling the Impact of Information and Incentives. The counterfac-
tual with fully revealing ratings has shown that the strategic rating system design
harms customers through two channels. First, upper-censoring ratings induce less
host effort, shifting the whole quality distribution to the left and decreasing the
quality of all properties. Second, some customers make an ex-post wrong decision
and choose Airbnb in cases in which the realized quality lies below their reservation
value or cannot choose Airbnb when the realized quality lies above their reservation
value, but they cannot identify the very best listings (recall the detailed discussion
of this second channel in Section 2).
My model allows me to disentangle these two channels. Column 5 of Table 5

presents an intermediate scenario in which I isolate the effort-incentivizing role of
ratings. In particular, I keep prices, host participation, and information structure
as in the baseline but just adjust the host effort level to the one induced by fully
revealing ratings as in column 4. In this scenario, Airbnb’s consumer surplus is
increased by 0.30%, accounting for only about 1/9 of the overall increase of consumer

52Source: https://www.wsj.com/market-data/quotes/ABNB/financials/annual/income-statement
(accessed on October 1, 2022).
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Figure 10: Heterogeneous Impact by Airbnb Listing Quality

Total Low Medium High
Airbnb Profit [M US$] +17.91 -0.54 +161.18 -142.72
Host Profit [M US$] +102.95 +1.02 +849.24 -747.31
Hotel Revenue [M US$] -67.71 -2.82 -218.72 +153.83

Notes: Differences in supply-side welfare measures between the baseline of platform-optimal
ratings (column 1 of Table 5) and the counterfactual of fully revealing ratings (column 4 of Table 5)
in monetary terms aggregated over the 56 geographical markets and years 2018 and 2019, depending
on Airbnb listing quality. Low qualities: ω < ω∗nt; medium qualities: ω ∈ [ω∗nt, ω̃nt]; high qualities:
ω > ω̃nt.

surplus from fully revealing ratings, leaving about 8/9 to the information channel.
This shows that the primary mechanism through which the current Airbnb rating
system is disadvantageous for consumers is that it does not let them distinguish
‘mediocre’ from ‘outstanding’ listings as they all receive 5 stars. As such, the novel
role of ratings in impacting customers’ perception of the platform relative to other
options, which this paper sheds light on, appears much more impactful than their
often focused role of mitigating hosts’ moral hazard (conditional on keeping the
participation threshold fixed).

Heterogeneous Impact by Airbnb Listing Quality. While Airbnb hosts on
average profit from the platform’s upper-censoring rating design, not all hosts are
actually better off than under fully revealing ratings. There is a redistribution of
surplus from high-quality hosts to medium-quality hosts, which exceeds the average
effect by almost an order of magnitude. Figure 10 shows the heterogeneous impact
on host profits compared to fully revealing ratings (in monetary terms, aggregated
over all 56 geographical markets and the years 2018 and 2019), depending on their
quality. Low-quality hosts, defined as ω < ω∗nt, below the threshold for pooling into
5-star ratings, are barely affected (only marginally through changes in price and
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participation cutoff). Medium quality hosts defined as ω ∈ [ω∗nt, ω̃nt] are those that
benefit immensely from being pooled into the 5-star rating because the expected
quality of the pooling signal is higher than their actual quality and therefore increases
the probability that they are booked. Their aggregate profits increase by US$849M,
corresponding to 65.9% of aggregated host profits under full information. Also,
the Airbnb profit generated from those listings is substantially increased. To the
contrary, high-quality hosts, defined as ω > ω̃nt, are actually harmed by the upper-
censoring ratings, as their actual quality is higher than the expected quality induced
by the pooling signal. Consequently, their probability of being booked is decreased.
Their aggregated profits are US$747.3M lower than under full information. This
corresponds to a decrease of 35.2% of the full information profits. Also, the profit
Airbnb generates from those listings is lower. However, the losses Airbnb suffers
from these listings are outweighed by the additional gains from the medium qualities.
This is the case because, with the S-shaped cumulative distribution function of
reservation values (or, equivalently, conditional choice probability function) resulting
from the estimated demand system, there are more customers with reservation values
in the medium range than in the high range, providing some additional intuition
why pooling of qualities in this part of the distribution is indeed profit-maximizing.

8. Conclusion
This paper presents a structural estimation of a Bayesian persuasion game embedded
in an empirical model of the short-term accommodation market to investigate how
Airbnb’s rating system design affects market outcomes and welfare. The theoretical
framework highlights the platform’s incentives to encourage an excess of rather
uninformative 5-star ratings (upper-censoring information structure). My estimates
from variation across 56 major travel destinations in the US in the years 2018 and
2019 reveal that a rating system that identifies and allows to exclude the worst
qualities is indispensable for the platform’s functioning. However, they also suggest
that the strategic rating system design reduces the average value of Airbnb to
customers by about 3.5% per booked night compared to a counterfactual of fully
revealing ratings. Aggregated over the markets and time period studied, this loss
amounts to US$288.2M. The platform-optimal upper-censoring ratings negatively
affect consumer welfare through two channels, and my model allows me to quantify the
relative importance of either one. 1/9 of the consumer welfare loss can be attributed
to the pooling of qualities incentivizing less costly host effort. The remaining 8/9
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are due to customers’ inability to distinguish mediocre from outstanding listings.
While pooling qualities into a 5-star rating harms the highest-quality Airbnb

hosts, these losses are more than made up for by gains from listings whose booking
probability increases by being included in the pooling. This is because the estimated
demand system yields a unimodal distribution of reservation values with more cus-
tomers in an intermediate range, who can additionally be persuaded, than customers
with such high reservation values that they do not consider the platform anymore
without being able to identify the very best listings. Overall, fully revealing ratings
would reduce aggregated Airbnb profits by US$17.9M and aggregated host profits by
US$103M compared to the platform-optimal upper-censoring ratings. This aggre-
gated effect hides, however, that there is a redistribution of surplus from high-quality
to medium-quality hosts of almost US$750M.

An essential prerequisite for Airbnb to be able to exploit such a strategic design of
the rating system to influence customers’ beliefs is that the ratings on the platform
are the single only source of information customers have about the unobserved quality
of a specific Airbnb listing. If a competitor listed and provided information about the
same properties, or if there was an independent platform collecting ratings of Airbnb
listings, Airbnb would lose this opportunity. As such, introducing an independent
rating platform could be a potential countermeasure if consumer protection authorities
got concerned about welfare losses due to strategic rating system design. Hotel
booking platforms, where such alternative information sources exist, feature more
informative rating systems; recall the distribution of ratings from booking.com in
Figure 1 in the Introduction.

My newly developed conceptual framework for the structural estimation of a
numerically solvable Bayesian persuasion problem with an objective function derived
from a discrete choice demand system may point the way to study empirically other
applications of Bayesian persuasion. It may contribute to bridging the gap between
the vast theoretical literature on information design from the last decade and practical
applications. The framework could readily be applied to analyze the rating system
design of other sharing economy platforms. For instance, the ride-hailing platform
Uber appears to follow a similar upper-censoring strategy to Airbnb.53 Another
potential application may be a quantitative welfare analysis of grading inflation in
schools and universities, which has been studied in a similar theoretical context by

53See Athey, Castillo, and Chandar (2021) for the distribution of Uber ratings and Appendix D.2
for some anecdotal evidence.
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Ostrovsky and Schwarz (2010) and Boleslavsky and Cotton (2015).
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Appendix

A. Additional Figures and Tables

Figure A.1: Cross-Market Correlation of Hotel Prices and occ_rat

Notes: The graph shows binned scatter plots (blue circles), a linear fit line (red), and the Pearson
correlation coefficient (‘R’) of the occupancy ratio between non-5-star and 5-star listings (occrat)
with respect to the average hotel price across 112 markets on the horizontal axes.
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Table A.3: Parameter Estimates without Demand Instruments

Parameter Standard
Estimate Error

Price (α) [5,6] 0.01349 0.00347
FE urban destination (γu) [5,6] 0.55 0.47
FE non-urban destination (γnu) [5,6] 0.51 0.53
Log OSM tourist POIs (ψ) [5,6] 0.32 0.10

Demand Share ‘private room’ (βA1 ) [5] -7.84 1.01
Coefficients Share ‘entire home’ studio (βA2 ) [5] -0.79 1.55

Share ‘entire home’ 2 bedroom (βA3 ) [5] -5.71 1.01
Avg. bookig.com rating (βH1 ) [6] 1.54 0.95
Share ≥ Upper Midscale (βH2 ) [6] 0.82 0.35
Nesting parameter (ζ) [5,6] 0.227 0.598

Unobs. Mean (ν) -1.50 0.49
Airbnb Std. dev. (σ) 1.27 0.30
Quality
Effort Constant (κ0) [3] 56.92 2.69
Costs Wage coefficient (κ1) [3] 0.13 1.79
Listing Constant (η0) [4] 35.40 0.70
Costs Rent coefficient (η1) [4] -0.01 0.08

Notes: GMM estimates and standard errors of the model parameters without instrumenting for
prices and within market shares in the demand equations. The numbers in brackets refer to the
equations in the main text the parameters are defined in. Standard errors are calculated based on the
usual analytical formula for GMM standard errors, based on numerical derivatives of the objective
function at the optimum.

Table A.4: Average Demand Elasticities
without Demand Instruments

Airbnb Hotel Outside
Airbnb -1.92 0.88 -
Hotel 0.09 -1.54 -
Outside 0.04 0.39 -

Notes: Nested logit demand elasticities for non-compression nights (i.e., nights in which customers
have the choice between all three options), based on the estimation without instrumenting for prices
and within market shares in the demand equations (Table A.3), averaged across 112 markets.
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B. Omitted Derivations
In the following, market subscripts are omitted to improve readability.

B.1. Rearrangement of the Host FOC
In this section, I derive the expression for the representative host’s first-order condition
stated as equation 12 in the main text. I follow the same steps that Boleslavsky and
Kim (2021) perform for the case with a discrete state space.

Given information structure π and conjectured effort level ê and cutoff quality ω̂,
by Bayes’ rule customers’ posterior density for any s ∈ S is given by

µBayes(ω|s, π, ê, ω̂) = π(s|ω)fω̂(ω; ê)∫∞
ω̂ π(s|ω′)fω̂(ω′; ê)dω′ . (B.1)

This defines customers’ Bayes-plausible belief structure. The equilibrium belief
structure M needs to be Bayes-plausible given equilibrium effort e, equilibrium cutoff
quality ω, and equilibrium information structure π. Moreover, the conjectured effort
level and cutoff quality must coincide with the hosts’ optimal choices. Hence, we
must have e = ê, ω = ω̂, and µs(ω) = µBayes(ω|s, π, e, ω). Moreover, note that
the denominator of the right-hand side of equation B.1 describes the unconditional
density of the Bayesian update µs, g̃(µs). Hence, equation B.1 can be rewritten as

π(s|ω) = µs(ω)g̃(µs)
fω(ω; e) . (B.2)

The first order condition of ΠRH as defined in the first line of equation 10 in the
main text with respect to e reads as

(1− τ)(pH + p)
∫ ∞
ω

∫
S
π(s|ω)ρA (Eµs [ω]) ds∂f(ω; e)

∂e
dω = Tf(ω; e) + 2ke. (B.3)

Using B.2 and switching the order of integration, B.3 can be restated in terms of
posterior beliefs only instead of signals as

(1− τ)(pH + p)
∫
S
ρA (Eµs [ω])Eµs

[
∂f(ω; e)/∂e
fω(ω; e)

]
dG̃(µs) = Tf(ω; e) + 2ke,

which corresponds to equation 12 in the main matter.
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B.2. Derivation of the Numerical Solution Algorithm
By Theorem 3 and Theorem 4 of Dworczak and Kolotilin (2019) for a given price
and target effort level, the platform’s optimization problem 14 of finding the profit-
maximizing distribution of posterior means G is equivalent to the dual problem
of finding an optimal price function ϕ ∈ C([ω,∞)) for posterior means and a
non-negative scalar λ that solve

min
ϕ,λ

∫ ∞
ω

ϕ(m)dFω(m; e)− λ σ2[Tf(ω; e) + 2ke]
(1− τ)(pH + p)[1− F (ω; e)] (B.4)

s.t. ϕ(m)− λρA(m)(m− ν − e) ≥ ρA(m) ∀m ∈ [ω,∞)

and in the optimum, we have

∫ ∞
ω

ϕ(m)dFω(m; e)− λ σ2[Tf(ω; e) + 2ke]
(1− τ)(pH + p)[1− F (ω; e)] =

∫ ∞
ω

ρA(m)dG(m).

If I fix λ, I can rewrite the dual problem as

min
ϕ

∫ ∞
ω

ϕ(m)dFω(m; e)

s.t. ϕ(m) ≥ [1 + λ(m− ν − e)] ρA(m) ∀m ∈ [ω,∞).

This is (see Theorem 3 by Dworczak and Kolotilin (2019)) the dual problem of an
unconstrained Bayesian persuasion problem with the payoff function

ṽ(m) = [1 + λ(m− ν − e)] ρA(m),

which depends on posterior beliefs only through posterior means m.
Hence, for any given λ, if ṽ(m) is S-shaped, the optimal information structure

is upper-censoring, and the threshold quality ω∗ can be found by solving equation
2 (replacing H(m) by ṽ(m) and h(m) by ṽ′(m)). While the conditional choice
probability functions resulting from a logit or nested logit demand system would be
S-shaped, ρA(m) as conditional choice probability resulting from a mixture of a three-
alternative nested logit system (non-compression nights) and a two-alternative logit
system (compression nights) is in general not S-shaped. However, as regular checks
during the optimization algorithm show, the S-shape is preserved for all empirically
relevant parameter values. The penalized objective function ṽ(m) perturbs ρA(m)
in a way such that the S-shape may be violated and ṽ(m) can be concave for very
small m and convex for very large m if λ is large. In all empirically relevant cases,
the initial concave portion lies below the participation cutoff ω and is therefore
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irrelevant. Moreover, in all empirically relevant cases, the convexity at the top is
not strong enough to provoke an additional interval of full revelation. Hence, the
upper-censoring information structure remains optimal and can be determined as for
the case with an S-shaped objective function.

In summary, the numerical solution algorithm comprises three nested optimization
loops. In the outer loop, I maximize ΠA over p and the targeted effort level e. In
the middle loop, for fixed p and e, I determine the λ that minimizes B.4. In the
inner loop, I solve for the optimal upper-censoring information structure in the
unconstrained problem for fixed p, e, and λ by solving equation 2 from the main text
with ṽ(m) as objective function.

B.3. Calculation of Outcome Measures for Counterfactual
Experiments

This appendix section provides some more details on calculating the outcome measures
for the counterfactual experiments presented in Section 7 of the main text.
In the counterfactual scenarios with fully revealing ratings (columns 3 and 5 of

Table 5), the distribution of posterior means corresponds to the prior distribution.
So, market shares are calculated by integrating the respective choice probability
function conditional on posterior means with respect to the prior distribution. For
Airbnb, this yields

ρA =
∫ ∞
ω

ρA(m)dF (m; e),

and the hotel market share is obtained in the same way.
In the counterfactual scenario with no ratings and therefore no participation

restriction (column 4 of Table 5), market shares are calculated by evaluating the
conditional choice probability functions at the mean ν of the prior distribution
without any additional host effort. That is, for Airbnb

ρA = ρA(ν),

and accordingly for hotels.
When keeping the baseline levels of Airbnb price and participation cutoff fixed

(column 6 of Table 5), the market shares without ratings are calculated by evaluating
the conditional choice probability functions at the mean of the truncated prior
distribution without any additional host effort, EF (·;0)[ω|ω > ω], and accounting for
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the truncation by multiplying with 1− F (ω; 0). For Airbnb, we get

ρA = (1− F (ω; 0)) ρA
(
EF (·;0)[ω|ω > ω]

)
,

and accordingly for hotels.
In the case with binary signals and fixed prices and host participation (Appendix

C), we get the Airbnb market share

ρA =
(
F (ωbin; e)− F (ω; e)

)
ρA
(
EF (·;e)[ω|ω < ω < ωbin]

)
+
(
1− F (ωbin; e)

)
ρA
(
EF (·;e)[ω|ω > ωbin]

)
,

where ωbin is the threshold value separating the low and high binary ratings. The
hotel market share is calculated in the same fashion.

The expected profit functions for Airbnb and the representative host in the different
counterfactual experiments are obtained by replacing in equations 9 and 10 the upper-
censoring market shares with the market shares in the respective counterfactual
scenario calculated according to the formulas above.
For the specified demand system accounting for hotels’ capacity constraints and

different choice sets for the marginal Airbnb customer in compression and non-
compression nights, in the baseline case of upper-censoring ratings, the expected
indirect utilities for the calculation of the Airbnb customer welfare measure in
equation 15 are given by

E[max{UA, UH ,U0}] = scn ρ̄H
∫ ∞
ω

log
(
1 + exp{δA +m}

)
dG(m)

+(1− scn)
F (ω; e) log

(
1 + exp{δH}

)
(B.5)

+
∫ ∞
ω

log
1 +

(
exp

{
δH

1− ζ

}
+ exp

{
δA +m

1− ζ

})1−ζ
 dG(m)


and

E[max{UH , U0}] = (1− scn) log
(
1 + exp{δH}

)
.

In the different counterfactual scenarios, E[max{UA, UH , U0}] is calculated accord-
ingly by integrating in equation B.5 with respect to the perspective induced distribu-
tion of posterior means, as for the calculation of the market shares resented at the
beginning of this section.
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C. Binary Ratings
This section considers two additional counterfactual exercises with platform-optimal
and consumer-optimal binary ratings. That is, unlike before, I restrict the signal
space to two discrete signals (e.g., thumb up/thumb down), and for each market, I
find the cutoff quality ωbin that maximizes expected platform profits or customers’
CV for Airbnb, respectively. The ‘high’ rating induces a posterior believed quality
of EF (·;e)[ω|ω > ωbin] while the ‘low’ rating induces a posterior believed quality of
EF (·;e)[ω|ω < ω < ωbin].

To isolate the role of ratings in identifying qualities of actually listed properties, in
both scenarios, I keep Airbnb prices and host participation (i.e., ω) as in the baseline
with platform optimal upper-censoring ratings, which by assumption correspond to
the status quo. The only choice variable is ωbin, and the corresponding host effort
level is found by solving the representative host’s first-order condition (equation 13
in the main text). Market shares and profits with binary ratings are calculated as
explained in Appendix B.3.

Table C.1, which is organized as Table 5 in the main text, summarizes the market
outcomes and welfare measures under these counterfactual scenarios. Column 1 shows
the baseline levels under platform-optimal upper-censoring ratings. Column 2 shows
the outcomes for platform-optimal binary ratings (i.e., ωbin is chosen to maximize
expected platform profits), and column 3 shows the outcomes for customer-optimal
binary ratings (i.e., ωbin is chosen to maximize customers’ CV for Airbnb). As
additional points of reference, column 4 repeats column 3 from Table 5 with no
ratings and fixed prices and host participation, and column 5 adds the case with
fully revealing ratings and fixed prices and host participation.

While with platform-optimal upper-censoring ratings, on average, 72% of listings
have a 5-star rating, with platform-optimal binary ratings, we have on average 74%
listings with the ‘high’ rating and with customer-optimal binary ratings, we have on
average only 27% listings with the ‘high’ rating. Customers benefit much more from
being able to identify the very best listings among all the acceptable ones than from
being able to identify the worst qualities among all the acceptable ones (recall that
host participation is fixed in this counterfactual).
Overall, the platform-optimal binary ratings (column 2) are a very close approx-

imation of the upper-censoring ratings. The welfare consequences work mainly
through less induced host effort but are very small on the whole. Both Airbnb and
customers only benefit marginally from knowing the exact qualities of the bottom
listings instead of only knowing that they are below the cutoff value. However, keep
in mind that taking the model at face value, binary ratings alone cannot exclude
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the worst qualities from participation as they do not fully reveal the quality around
the threshold ω. In this sense, all the scenarios with fixed host participation are
not inherently stable outcomes but only hypothetical scenarios to isolate the purely
informative role of ratings in identifying different qualities among those actually
listed. A counterfactual simulation for a stable outcome with binary ratings would
require an additional modeling assumption on how participation adjusts if ratings
are not fully revealing around the participation threshold ω.
Remarkably, customer-optimal binary ratings (column 3), despite only using

two signals instead of 9 or a continuum, can improve the ex-ante Airbnb value to
customers by 1.79% compared to the status quo and can thereby deliver more than
half the benefit of fully-revealing continuous signals (compare to column 5). This
shows that the discrete nature of the rating scale or the number of available signals
on a 5-star scale are not the primary factors limiting information transmission to
benefit customers. It is instead the design by the platform which determines the
cutoff values in a strategic way that increases their profits but harms the average
customer.
The results for the scenario with fully revealing ratings but with Airbnb prices

and participation cutoff ω fixed as in the baseline (column 5) demonstrate again
the substitutability between higher prices and less information. If the platform can
re-adjust prices, it can get back parts of the lost profits from fully revealing ratings
by increasing the price (recall column 4 of Table 5 in the main text). If Airbnb is
not allowed to adjust the price, all the welfare consequences are more pronounced.
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D. Additional Anecdotal Evidence

D.1. Airbnb
Platform Only Accepts Five Stars

Figure D.1: Airbnb pop-up message for a host with insufficient average rating

Source: https://medium.com/@campbellandia/how-to-avoid-the-dreaded-4-star-review-a-guide-
for-airbnb-hosts-cdf482d083fe (accessed on September 24, 2022).
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Rating Instructions by Airbnb Hosts

Figure D.2: Rating Instructions by Airbnb Hosts – II

Source: https://airhostsforum.com/t/review-star-system-need-to-educate-guests/28227/3 (ac-
cessed on September 24, 2022).
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Figure D.3: Rating Instructions by Airbnb Hosts – III

Source: https://community.withairbnb.com/t5/Hosting/Explaining-5-star-ratings-to-guests/td-
p/882631 (accessed on September 24, 2022). Picture of hosts blurred by the author.
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D.2. Uber
Explicit Instructions

In 2019, Uber wrote explicitely on their customer help pages:

Most riders provide a 5-Star rating unless there was a specific issue with
the trip. If we see a 1-Star rating, it typically means that there is a
serious problem with a driver.54

Platform Only Accept Five Stars

Uber writes in their Community Guidelines:

There is a minimum average rating in each city. [...] Drivers [...] that
don’t meet the minimum average rating for their city may lose access to
all or part of the Uber Marketplace Platform. If your rating is approaching
this limit, we will let you know and may share information that may help
you improve your rating.55

A Frequent Customer’s View

[...] in my experience, the lack of ratings differentiation makes it difficult
to distinguish between exceptional and marginally acceptable service. I
take an embarrassing number of Uber and Lyft rides each week. I’ve
ridden with 4.7 star drivers who wear gloves and open passenger doors
and 4.7 star drivers who couldn’t pass a road test. It may seem a petty
distinction, but in some cases, inflated ratings could threaten customer
safety.

Kat Kane, wired.com, 19.03.201556

54Source: https://help.uber.com/riders/article/rating-a-driver?nodeId=478d7463-99cb-48ff-a81f-
0ab227a1e267 (accessed on June 17, 2019). In the time following, the exact wording has been mod-
ified several times, and by now these explicit rating instructions have been removed completely;
see https://web.archive.org/web/20200801000000*/https://help.uber.com/riders/article/rating-
a-driver?nodeId=478d7463-99cb-48ff-a81f-0ab227a1e267.

55Source: https://www.uber.com/legal/community-guidelines/us-en/ (accessed on September 24,
2022).

56Source: https://www.wired.com/2015/03/bogus-uber-reviews/ (accessed on September 24, 2022).
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Rating Instructions by Uber Drivers

Figure D.4: Rating Instructions by Uber Drivers

Source: Caroline O’Donovan, BuzzFeed News, https://www.buzzfeednews.com/article/carolineodonovan/the-
fault-in-five-stars (accessed on September 24, 2022).
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